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Stability of Slotted Aloha with Multipacket
Reception and Selfish Users

Allen B. MacKenzie and Stephen B. Wicker

Abstract

Aloha is perhaps the simplest and most-studied medium access control protocol in existence. Only in the recent
past, however, have researchers begun to study the performance of Aloha in the presence of selfish users. In this
paper, we present a game-theoretic model of multipacket slotted Aloha with perfect information. We show that this
model must have an equilibrium and we characterize this equilibrium. Using the tools of stochastic processes, we then
establish the equilibrium stability region for a variety of well-known channel models.

I. I NTRODUCTION

Aloha and its variants have been central to the understanding of communications network theory for many years.
Simple to describe and straightforward to analyze, Aloha is probably the most widely studied medium access control
protocol in existence. Furthermore, systems using variants of the Aloha protocol are widely deployed. [I need 2-3
examples of modern systems which use Aloha.]

Aloha was first proposed in [1]; the slotted variation was introduced in [2]. Early research sought methods to stabilize
the protocol and provide for retransmission control to make use of available feedback information, for examples see
[3], [4].

The operation of slotted Aloha is straightforward. All nodes accessing the medium are synchronized, and time is
divided into slots. When a node has a packet to send, it may attempt to transmit it in any slot. Conventionally, a node
with a newly arrived packet will attempt to transmit in the first slot after packet arrival; packets being retransmission
because of a collision will be transmitted probabilistically. In this paper, however, we assume that newly arrived
packets and packets awaiting retransmission are treated identically.

In conventional Aloha models, it was assumed that if exactly one packet was transmitted in a slot then that packet
would be received without error; otherwise, all transmitted packets were destroyed. Obviously, this model is somewhat
pessimistic as differences in received power, etc., may make it possible for a packet to be received even in the presence
of one or more interferers. Furthermore, recent advances in receiver technology, as well as uses of multiple channels,
etc., have made it possible for more than one packet to be successfully received simultaniously. This desire for more
accurate channel modeling as well as technological progress have led to the development of multipacket reception
(MPR) models for Aloha. The most widely-used MPR model was developped by Ghez, Verdu, and Schwartz in the
1980s [5], [6]. We adopt their MPR model in this work.

Despite the bounty of work invested in understanding Aloha, all of the studies of Aloha which we are aware of have
ignored the performance of Aloha in the presence of selfish users. In an age of ubiquitous communications terminals
and open communications standards, we must begin to treat user devices as selfish agents. Consider the case of the
internet — while system designers can recommend various congestion reduction backoff algorithms, actually assuring
that end users are running a selected algorithm is nearly impossible. Similar problems exist in most network protocols
based on open standards.

The communications research community has failed to investigate the performance of medium access control pro-
tocols in the presence of selfish agents. This has lead to the deployment of protocols and systems which can be easily
hijacked or manipulated. A better understanding will

1) help us understand our current protocols better and
2) lead to the development of better protocols in the future.
In the remainder of this paper, we will provide a brief introduction to game theory and then present a game-theoretic

model for slotted Aloha with multipacket reception. We will then show that an equilibrium of this model must exist,
and we will show how we can characterize the equilibria of these games; using this characterization, we will compute
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(analytically or numerically, depending on the complexity) the stability region for a slotted multipacket Aloha system
with selfish users and perfect information.

II. GAME THEORY

The appropriate tool for the analysis of a system in which a group of users with conflicting interests interact is game
theory. Developped principally by economists for the study of the interaction of agents in a market, game theory can
also be readily applied to problems in communications systems when the users are thought of as intelligent agents who
seek to maximize some measure of their own well-being.

The most basic setting of game theory is the normal form game. Three elements define a normal form game:
• a set of usersI (usually taken to be finite),
• a set of actions for each userAi, i ∈ I which together define a set of possible action profilesA = ×i∈IAi, and
• a utility function for each userui : A → R.

When the game is played, each playeri selects an action from his own set of actionsAi. These selections are made
without any knowledge of the selections made by others. The selections of all players taken together define an action
profile,a ∈ A, and each playeri receives the payoffui(a).

Ordinarily, we assume that a player is not limited to choosing actions directly fromAi. Instead, we allow players
to choose “strategies” or mixed actions which are probability distributions overAi. Let Σi = ∆(Ai) be the set
of probability distributions overAi. What does it mean to select a strategy which is a probability distribution over
actions? We adopt the simple explanation that a player who selects a mixed strategy will use a random device (such
as a series of coin flips) to determine which action inAi that she will play. Now, when each player selects a strategy
σi ∈ Σi, the action profile isσ ∈ Σ = ×i∈IΣi. What are player utilities if a mixed strategy profile is selected? The
usual assumption is that players are expected utility maximizers. That is, we extend the simple definitions ofui in the
most straightforward way. If theAi are finite, then we have (in a slight abuse of notation)

ui(σ) =
∑
a∈A

σ(a)ui(a).

Once such a game has been defined, game theory defines a solution concept which attempts to specify what we
should “expect” to occur if rational players play the game. The most widely known solution concept is the Nash
Equilibrium. For convenience, we will sometimes write an action profilea ∈ A as(ai, a−i) whereai denotes the
action chosen by playeri anda−i denotes the actions chosen by everyone else; we will use a similar notation for
mixed strategy profilesσ ∈ Σ. An action profilea ∈ A is said to be a Nash Equilibrium if for every playeri ∈ I

ui(ai, a−i) ≥ ui(a′i, a−i)∀a′i ∈ Ai.

That is, an action profile is a Nash Equilibrium if no player can gain by unilaterally deviating from the specified profile.
An identical definition holds for Nash Equilibria in mixed strategies. A mixed strategy profileσ ∈ Σ is said to be a

Nash Equilibrium if for every playeri ∈ I

ui(σi, σ−i) ≥ ui(σ′i, σ−i)∀σ′i ∈ Σi.

Because of the assumption that players are expected utility maximizers, however, the inequality in this definition is
equivalent to the more easily checked inequality

ui(σi, σ−i) ≥ ui(a′i, σ−i)∀a′i ∈ Ai.

The Nobel prize winning result of John Nash was that for all finite games (games with finite setsI andAi), there
exists a Nash equilibrium, possibly in mixed strategies.

The results in the remainder of this paper will require a more complex type of game, with a correspondingly more
complex notion of an equilibrium. The basic notions of a game, a strategy, and an equilibrium will continue to hold,
however.
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III. PROBLEM MODEL

We examine an Aloha system in which selfish users make transmission decisions in an effort to maximize their
utility. The channel model we employ is taken from [7]; this model assumes that when the number of successes in a
given slot depends only upon the number of transmissions. Specifically, the channel is defined by a MPR matrix

E =


ε10 ε11 0 0 0 0
ε20 ε21 ε22 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
εn0 εn1 εn2 . εnn 0
. . . . . . . . . . . . . . . . . . . . . . . . . .


whereεnk is defined as the probability thatk packets are successfully received in a slot wheren packets are transmitted.
This model is applicable to a wide variety of channels with capture and to some systems using CDMA.

We define the expected number of successes in a transmission of sizen to be

en =
n∑

k=0

kεnk.

We assume that all users who transmit in a given slot are equally likely to be successful. Ifn users transmit and
k are successful, then the probability that any particular user’s transmission is successful isk/n. More usefully, ifn
users transmit, the probability that a particular user’s transmission is successful is given by

n∑
k=0

εnk
k

n
=

en

n
.

We assume that users interact as players in a game. A user enters the game when she has a packet to transmit; she
leaves the game when her packet has been successfully transmitted. In each slot while she is in the game, the user
can choose either to transmit or to wait. We assume that in each slot the users know how many users are currently
participating in the game; in other words, it is a game of perfect information.

We assume that users enter the game according to an exogenous random process, and the number of arrivals in each
slot are independent and identically distributed random variables with distributionα ∈ ∆(Z+) whereZ+ is the set of
nonnegative integers. Let the expected number of arrivals per slot be denotedλ:

λ =
∞∑

k=0

kα(k).

For the moment, we allow for the possability thatλ = ∞.
A user’s immediate payoff is determined by whether or not she transmits and whether or not she is successful. We

normalize the value of a successful transmission to 1, and we assume that the cost of transmitting isc ∈ (0, 1). So, the
immediate payoff from a successful transmission is1 − c; the payoff from an unsuccessful transmission is−c. The
payoff from not transmitting in a particular slot is0.

We further assume that the users share a common per-slot discount rateρ ∈ (0, 1), and that the goal of each user is
to maximize her discounted sum of payoffs. That is, when a user enters the game at timet0, her goal is to maximize
the expectation of

∑
t=t0

∞ρt−t0ut whereut is the immediate payoff defined in the previous paragraph for each slot
t where she is still in the game and is0 for all slots after she successfully transmits. Finally, we assume that users are
expected utility maximizers.

Since we assume perfect information, a strategy in this game is a mapping from the number of users currently in the
game to a transmission probability. That is, a strategy is a functionσ : Z++ → [0, 1] whereZ++ is the set of positive
integers. We are looking for an equilibrium strategy in the sense of Nash. A strategyσ0 is said to be an equilibrium
strategy in the sense of Nash if given that all other players in the game are playingσ0, σ0 is an optimal strategy to play.
Note that we are requiring that in equilibrium all players play the same strategy. This reflects a feature of Aloha: the
players are indistinguishable.
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This game belongs to a general class of games known as Games of Population Transition, which we introduce in
[8]. In that work, we provide a general existence proof for games of population transition. Here, we present a special
case of the theorem with a proof appearing in the Appendix.

Theorem 1:For any MPR slotted Aloha system with MPR matrixE, any cost parameterc ∈ [0, 1], any arrival
distributionα, and any discount rateρ ∈ [0, 1), there exists an equilibrium strategyσ (not necessarily unique) of the
MPR slotted Aloha game.

IV. A NALYTICAL RESULTS

In this section we develop the primary results concerning the stability of a MPR Aloha system with selfish users. We
begin by providing conditions on the MPR Aloha game under which the equilibrium Markov chain over the number of
users in the system,{Xt}∞t=0 is irreducible and aperiodic. We then characterize the equilibria of these games and show
how to compute the stability region of such a game. In the following section we will show how these results apply to
some particular systems.

The main result of the previous section was that an equilibrium exists for any MPR slotted Aloha system. In the
current section we wish to characterize those equilibria, particularly with respect to their stability. Observe that the
MPR matrix for a channelE, the arrival distributionα, and a particular equilibrium behaviorσ define a Markov chain
over the number of users currently contending for the channel. Given the current staten ∈ Z+, all of the current users
transmit with probabilityσ(n). The next state is then determined by the number of successful transmissions and the
number of new arrivals. In order to apply many of the results of Markov chain theory, it is necessary that the given
Markov chain be irreducible. We provide sufficient conditions onE andα which will guarantee that any Markov
chain resulting from an equilbrium strategyσ will be irreducible and aperiodic. Similar conditions are presented in
[5], [6]. In that case, however, a fixed retransmission probability is assumed, and specific restrictions are placed on that
probability. We place no restrictions on the equilibrium strategyσ other than those which are implied by our conditions
onE andα. Furthermore, in [5], [6] it is assumed that all arriving users will transmit in the next slot; we assume that
arriving users will use the same retransmit probability as other users.

α(0) 6= 0 (1)

∃N, {en}n≥N is nonincreasing (2)

ε10 < 1− c (3)

(4)

Condition??guarantees that if the Markov Chain is irreducible then it must be aperiodic because it ensures that state 0
is aperiodic. Condition??ensures that transmitting with certainty is not a best response in any staten ≥ N [check this
and explain further]. Finally, condition??ensures that in every state it is possible to make ... In addition, condition??
ensures thatσ(n) = 0 is not a best response for any staten. Suppose not. That is, suppose thatσ(n) = 0 for somen,
then in staten a user can obtain a payoff ofε11 − c by transmitting. But this is greater than the payoff from waiting;
hence, everybody waits is not a best response.

We have now found sufficient conditions onE andα to ensure that the Markov chain on the number of users induced
by an equilibrium strategyσ must be irreducible and aperiodic. For the remainder of this section, we assume that those
sufficient conditions hold.

For a given MPR matrix which meets the sufficient conditions, we know that there existsN such that{en}n≥N is a
nonincreasing sequence. Furthermore, we know that for an equilibrium strategyσ, ∀n ≥ N , 0 < σ(n) < 1. That is,
for n ≥ N , players are mixing between transmit and wait for large enoughn. Because our players are expected utility
maximizers, for an equilibrium strategy to use a nondegenerate mixing strategy, it must be the case that the payoffs
from all strategies in the support of the mixture are the same. In this case, that means that if everyone else is playing
σ, then the payoff from transmitting whenn ≥ N must equal the payoff from waiting. If we write out expressions for
these two quantities, then we have forn ≥ N ,

n−1∑
k=0

(
n− 1

k

)
σ(n)k(1− σ(n))n−1−k ek+1 + (k − ek)

k + 1
− c =(5)

(6)
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When we found conditions for the irreducibility and aperiodicity of the Markov Chain over the number of users
contending for the channel, we showed that under these conditions the value functionv(n) must be non-increasing.
Provided that the sequence{en} is bounded, it is straightforward to show that we must also havelimn→∞v(n) = 0.
It follows that in the limit asn →∞, most of the terms in equation??go to zero. Letγ = limn→∞nσ(n), supposing
that the limit on the right-hand side exists. Then in the limit asn → ∞, we can rewrite the first term on the left-hand
side of equation??and apply the Poisson approximation to obtain

∞∑
k=1

e−γγk−1ek

k!
= c

For a particular channel model and a particular value of the cost parameterc, it is possible to solve this equation forγ;
we call the solution̂γ.

Once the value of̂γ is known, one can use this value to compute the throughput of the system as the number of users
becomes large. LetDn denote the expected drift of the Markov chain representing the number of users contending for
the channel when there aren users contending. We can break this expected drift into two pieces: a positive component,
representing new arrivals, and a negative component, representing departures. Hence we have the following expression
for Dn:

Dn = λ−
n∑

k=0

(
n

k

)
σ(n)k(1− σ(n))n−kek.

In the limit asn →∞, we can again apply the Poisson approximation to obtain

lim
n→∞

Dn = λ−
∞∑

k=0

e−γ̂ γ̂k

k!
ek.

Lemma 1:Given an irreducible, aperiodic Markov chain such that
1) Dn < ∞ for all n and
2) limn→∞ < 0

then the Markov chain is positive recurrent [9].
From this equation, using standard results of Markov Chain drift analysis, we can conclude that the Markov Chain

will be positive recurrent if

λ <

∞∑
k=1

e−γ̂ γ̂k

k!
ek.

In this section we have shown how to calculate the stability region for a perfect-information MPR Aloha system.
Although these equations can be solved analytically for only a few simple channel models, we have found that numer-
ical solutions can be obtained relatively easily. In the next section we apply these results to a number of well-known
channel models.

In conventional Aloha analyses, the perfect information analysis is used to provide bounds on performance for the
case of imperfect information. Regrettably, this standard argument does not hold in the case of game-theoretic analysis.
It is possible to construct simple games in which imperfect information actually improves players’ payoffs. Although
that seems unlikely in the current case, it is important to investigate the case of imperfect information carefully before
attempting to draw conclusions from the bounds derived above for the perfect information case.

V. EXAMPLE SYSTEMS

The capture model described in this paper (taken from [5], [6]) is quite general. In this section we present results for
several different channels. Since these models appear elsewhere in the literature, our focus here will be on computing
the maximum throughput which can be supported by such a channel if the contending users are selfish.

In all of these examples, we will assume that the arrival distributionα is Poisson with rateλ. We note, however,
that the exact distribution is not important provided that the conditions for irreducibility are satisfied; for most of the
models here, this means simply that∃n > 1, such thatα(n) > 0.
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A. General Capture

There are several models for capture in Aloha. These models are primarily based on either power discrimination or
time descrimination. Our discussion here will focus on power discrimination, but the results for time discrimination
are similar. As special cases of this result, we will include the conventional collision channel and the perfect capture
channel.

Assume that the system can capture a maximum of one packet per slot, and that if any packet is captured it will be
the packet with the highest received power; denote that powerP1. Finally, assume (as in [10], [11], [12]) that whether
or not this packet is received depends solely on the second highest received power, denotedP2. Specifically, assume
that the highest powered packet will be received if and only ifP1/P2 > K whereK ≥ 1 is a system dependent
constant. Note thatK = 1 denotes perfect capture whileK = ∞ denotes the conventional collision model.

If we make the conventional assumption of power law fading, then the received power will beP = cr−β wherec
andβ are system dependent constants andr is the user’s distance from the receiver. Ifr1 is the distance of the closest
user andr2 is the distance of the second closest user, then the packet will be captured ifr2 > br1 whereb = K1/β .

Assume that all transmitting users are distributed uniformly in a circle of radius1, and that the positions of the
transmitting users are independent from one slot to the next. If there arek transmitting users in a slot, what is the
probability that a packet is captured? When the users are distributed uniformly over a circle of radius1, their distances
from the center are distributed as a random variableR with probability density functionfR(r) = 2r. The probability
of capture can then be easily computed as1 if k = 1 and1/b2 otherwise.

Hence we have

E =


0 1 0 0 0 0

1− 1/b2 1/b2 0 0 0 0
1− 1/b2 1/b2 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

Hence we havee1 = 1 andek = 1/b2 for k 6= 1.
We substitute these values into equation IV in an attempt to solve forγ̂. This equation does not yield to analytical

solution methods for arbitrary values ofb.
Note that the conventional collision channel,b = ∞, does not satisfy the sufficient conditions for irreducibility

which we provided. It is straightforward to show, however, that forn > 1 any equilibrium must haveσ(n) < 1. Hence
the Markov chain will be irreducible and aperiodic, as desired. Whenb = ∞, we can solve equation IV to obtain
γ̂ = − ln c. Hence the system will be stable provided thatλ < −c ln c.

For the perfect capture channel,b = 1, solving equation IV is impossible using standard functions. Using Mathemat-
ica, however, it is possible to solve the equation to obtainγ̂ = 1/c+ProductLog(−e−1/c/c), whereProductLog(x)
is the principle solution forw of x = wew. Hence the system will be stable for arrival ratesλ < 1+cProductLog(−e−1/c/c).

The curves in figure?? show the maximum throughput bound as a function ofc for several different values ofb
including the perfect capture (b = 1) and conventional collision (b = ∞) models. Not surprisingly, asc → 0 the
throughput bound goes to1/b2 becauseσ(n) → 1 as transmitting becomes costless. Also as expected, asc → 1, the
throughput bound goes to zero. When the cost of transmission approaches the value of a successful transmission, users
will not transmit unless the probability of success is extremely high.

Another somewhat surprising result is that atc = 1/e the conventional collision channel is stable for allλ < 1/e.
Hence for this particular value of the parameterc the selfish Aloha channel supports the same throughput as Aloha
with unselfish users.

The maximum throughput under optimal (total throughput maximizing) control with perfect information is com-
puted to be1/b2 + (1− 1/b2)e( − b2/(b2 − 1)) in [7]. From figure??, it appears that for each value ofb, there exists
some value ofc which obtains the same maximum throughput as the optimal controller.

This observation leads to a design suggestion. Suppose thatc, the cost of transmission is fixed relative to the value
of a successful transmission, is fixed. Then the designer should seek a technology with a capture parameterb such that
c is the cost at which the throughput bound forb is maximized. Regretably, changes that decreaseb (i.e. decrease the
SINR at which a packet can be successfully decoded) usually increase the cost of transmissionc. Nevertheless, this
simple example shows that it may be possible for a designer to adjust system parameters in order to make a system
perform better in the presence of selfish users.
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B. q-frequency Hopping Model

The q-frequency hopping model assumes thatq conventional collision channels exist in a system. After choosing
to transmit, a user selects one of theq channels on which to transmit, all with equal probability. If exactly one user
transmits on a given channel, then the user on that channel is successful; if more than one user transmits on a given
channel, then no users on that channel are successful.

Not surprisingly, adding conventional collision channels increases the capacity of the system linearly.

C. CDMA Model

Although similar to the q-frequency hopping model, with the prevelance of direct sequence spread spectrum com-
munications systems, it is worthwhile to consider a CDMA Aloha model. We assume that all transmissions are spread
with a spreading factor ofW [is this an appropriate symbol?] using one ofN different available spreading codes.
[Do we need more detail about the spreading codes?] When a user decides to transmit a packet, she selects one of the
available spreading codes at random. The most interesting feature of this model is its soft failure. Using the results of
[], we presume that the bit error rate falls off as the number of transmitters increases.

VI. CONCLUSIONS

In this paper we have found the stability region for a slotted Aloha system with multipacket reception and selfish
users for the case of perfect information. We have computed this region for a variety of common channel models and
have shown that while the stability region is dependent on the cost parameter,c, in some cases it may be as large as the
stability region of a centrally controlled system.

Although we caution that these results do not necessarily provide bounds on stability for the case of imperfect
information (e.g. ternary feedback), we believe that they are still useful in cases where the number of users contending
for the channel can be reliably estimated.

In addition, we observed that the results for the general capture channel provide some insight for system designers
attempting to design for selfish users. We expect that further study will reveal other ways to

The next research challenge in this area concerns the development of results for the case of practical interest —
the case of imperfect information. An example of this is ternary feedback. Preliminary results suggest the existence
of equilibria in such games, but the computation of equilibria is much more difficult than in the case of complete
information.

We further contend that a similar approach could be profitable for investigating other medium access control proto-
cols as well as the interaction of nodes at higher layers of the protocol stack.
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APPENDIX

Proof: In this appendix we will use a standard fixed point argument to show that the MPR Aloha game must have
an equilibrium. As a side-effect, we will also prove the existence of a value function,v : Z++ → R representing the
expected discounted value to a player of being in the game when there aren players contending for the channel.

Suppose that all players in the game are playing a particular strategyσ. We begin by constructing a value function
for this strategy, which we denotevσ. Suppose that we begin withn players in the game; if all players transmit with
probabilityσ(n), then the expected immediate reward for the players is given by∑

k = 0n

(
n

k

)
σ(n)k(1− σ(n))n−k ek

k
− σ(n)c.

[I can simplify this argument a great deal, I believe. All I have is a Markov chain with a known bounded immediate
reward function. I believe that there is a basic theorem from Markov chain theory that provides for the existence of a
reward function.]

For convenience, we define the following two functions.uσ,T (n) is the expected reward from transmitting when
there aren users contending for the channel and everyone else is playing strategyσ. Similarly,uσ,W (n) is the expected
utility from waiting.

uσ,T (n) = (7)

uσ,W (n) = (8)

Now, given the value functionsvσ we will show how to compute a best response toσ. For allσ and alln let

Φσ(n) = arg max
p∈[0,1]

puσ,T (n) + (1− p)uσ,W (n).

Observe that due to the very simple linear nature of this maximization problem, the value of this correspondance will
be either0, 1, or the whole interval[0, 1]. Let S0 be the set of all possible strategies. In order to prove our result,
we wish to show that the correspondanceΦ : S0 ⇒ S0 satisfies the requirements of the Glicksburg-Fan Fixed Point
Theorem.

Lemma 2:Given an upper semi-continuous point to convex set correspondanceΦ : S ⇒ S of a convex compact
subsetS of a convex Hausdorff linear topological space into itself there exists a fixed pointx ∈ Φ(x).

Let S be the set of all functions fromZ++ to R and endow this set with the sup norm,||s||S = supn∈Z++ s(n).
ThenS is a convex Hausdorff topological vector space.

Now letS0 be the set of all functions fromZ++ to [0, 1]. This is a convex compact subset ofS.
We have already seen thatΦ is a point to convex set correspondance. All that remains to ensure the existence of a

fixed point via Glicksberg-Fan is to show thatΦ is upper semi-continuous. Suppose not. That is, suppose that there are
sequencesσk andσ̃k, such thatσk → σ, σ̃k → σ̃, σ̃k ∈ Φσk, but σ̃ 6∈ Φσ. Then there existsn such that̃σ(n) is not a
best response toσ(n) under valuationvσ. But we know that some best response exists, hence there exists ap ∈ [0, 1]
and anε > 0 such that

puσ,T (n) + (1− p)uσ,W (n) > σ̃(n)uσ,T (n) + (1− σ̃(n))uσ,W (n) + 2ε

Now for k sufficiently large, we have


