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Abstract—This paper analyzes layer 2 contention resolution

medium access control (MAC) protocols, better fairness and

strategies for wireless networks with multipacket recepton by service differentiation, higher throughput, and a meckmani

using noncooperative game theory. Necessary and sufficient

conditions are obtained for a strategy profile to be a Nash
equilibrium. Applications of the derived equilibrium cond itions
to predict selfish behavior and the resulting equilibrium pefor-
mance are illustrated in specific communication scenarioslang
with various design insights. The collective equilibrium kehavior
of wireless networks with large user populations is also silied,
and a Poisson-Bernoulli type approximation is obtained forthe
total number of packet arrivals. Finally, random access cotrol
with imperfect information structure is considered, the form
of equilibrium strategies as well as uniqueness and existea
results for general wireless channel models are obtainednd the
best-response learning dynamics achieving an equilibriumare
illustrated in specific instances.

Index Terms—Slotted ALOHA, multipacket reception, game
theory, contention resolution, medium access control

I. INTRODUCTION

by which to decouple contention control from handling fdile
packets for a class of multiple access networks. Motivated b
these recent results, this paper also focuses on layer 2 MAC
protocols for next generation wireless networks, and plewi
newequilibrium results and design insights for such protocols
based on noncooperative game theory.

Our main contribution is the derivation of necessary and
sufficient Nash equilibrium conditions for setting persiste
probabilities in an adaptive-persistent slotted ALOHA pro-
tocol in which persistence probabilities are adaptivelglatpd
according to the derived equilibrium strategies. Theselibgu
rium conditions are given for general wireless channel$ wit
multipacket reception capability. We also provide appiares
to commonly used channel models to illustrate how the de-
rived equilibrium strategies can be utilized to provideviss
differentiation and to design user utility functions opdily
in multiple access networks. In the second half of the paper,

Fourth generation (4G) wireless communication networkfiese results are first used to establish a Poisson-Bernoull
empowered with a new generation of open source opg:

%pe approximation for the limiting distribution of the &bt

ating systems are expected to transform mobile handsets iffmper of packet arrivals at Nash equilibrium for large user

intelligent terminals for applications such as high-deifomi
video streaming, online gaming, etc. [1]. An emerging vited
sign challenge in these networks is the distributed coaitbin

populations, and are then extended to imperfect informatio
random access games. In the imperfect information case, we
observe that a Braess-like paradox occurs and the network

and control of increasingly autonomous and heterogenous M%oughputis reduced if more information is publicly auile

bile terminals for efficient allocation of limited commuaiton

about user utility functions.

resources such as bandwidth and power. Game theory and the
related field of mechanism design have the potential to guide
engineering efforts to overcome such challenges by progidiA. Background and Literature Review

a bottom-up analytical and principled approach to the desig \yireless channels are inherently broadcast in nature €Fher
of local operation rules and to the verification of resultingy e the resolution of contention among mobile users for ac

collective network behavior through equilibrium analyses
In particular, recent works [2]-[5] illustrate how game ding

cess to common wireless communication resources remains as
a fundamental bottleneck in wireless multiple access commu

provides new insights to reverse/forward engineer edstifyication. In particular, transmissions through wirelésarmels
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must be coordinated to control multiple access interfezenc
(MAI), and thereby to maximize target data rates. Indeed, th
problem has received considerable attention in the lileeat
and questions such as what packet arrival rates are required
to stabilize transmitters’ queues and channel throughpait a
relatively well-understood when all mobile users obey a
predetermined set of rules for choosing their transmission
probabilities, e.g., see [6]-[10]. Based on these studies as
well as many others, various contention based random access
approaches have been proposed in [11], including the most
prominent ones such as slotted ALOHA, CSMA/CA and IEEE
802.11 DCF, which do not require centralized scheduling. A



key design degree of freedom in these random access prstotioé same model used in [13] over wireless channels with
is channel access probability determination, or contentionultipacket reception capabilities, and establish thaterice
resolution, to mitigate MAI. Different protocols differ in of the symmetric Nash equilibrium as well as packet arrival
how they implement contention resolution, with prominentates stabilizing the queues for some well known channels. |
examples being window based and persistence probabilit], the same game model over collision channels but with
based approaches. heterogenouset of mobile users is investigated. Necessary
In addition to the classical approach to contention contra@nd sufficient conditions for a strategy profile to be a Nash
there has been a considerable amount of more recent weddilibrium are obtained. The same authors have also extend
such as [2]-[5] and [12]-[20] providing a new game theoretithese results to imperfect information games [16] and tg@Em
design perspective for contention resolution. These studie multipacket reception models [17]. In [18], the authors-gen
mainly motivated by ideas revolving around distributedtcoin eralize the results in [14] to the multipacket reception elod
and coordination of increasingly more heterogenous and prsing channel state information to schedule transmissitimes
grammable wireless communication devices to engineer nexistence of a Nash equilibrium operating point is shown,
generation wireless MAC protocols and technologies. In [2hnd a stochastic gradient based strategy update mechanism
[4] and [12], the main focus is on the dynamics of iterativeonverging to this equilibrium is proposed.
strategy update mechanisms such as best-response, gradie®ther game models for random access have also been con-
or Jacobi play, achieving a desired equilibrium operatirgi/dered in the literatures.g.,[19] and [20]. In [19], the authors
point over collision channels. In [12], the authors consideise a Markovian model to express the channel throughput as
the classical slotted ALOHA setting in which mobile usera function of mobile users’ transmission probabilities rove
update their transmission probabilities in a distributemhmer collision channels. This model is then used to study the
to achieve their target throughput levels. This work esshles symmetricequilibrium contention resolution strategies in a
local convergence properties for the proposed Jacobeglyat game setting in which each mobile user aims to maximize its
update mechanism to a Nash equilibrium operating point. own channel throughput selfishly. Through numerical anslys
In [2] and [3], the authors extend the framework introduceitl is shown that the overall channel throughput achieved
in [12] by interpreting contention control as a dynamicatire by selfish mobile users coincides with the throughput that
feedback system responding to the current contention meastan be achieved via centralized controller, as in [13], if a
and transmission probabilities of mobile users. This edégn pricing mechanism is employed. In [20], the optimal choice
model allows for the analysis of maximum network throughpuaf transmission probabilities subject to a minimum througth
for heterogenous networks with different traffic classdgiestt demand over collision channels is considered. In the model
to fairness constraints. Among many other results, thiskwoemployed, channel state information is used to schedule
illustrates that the game theoretic approach providesenighransmissions, similar to the model in [18]. It is shown that
throughput, better fairness and service differentiatiand there are only two Nash equilibria, one is strictly better
a mechanism to decouple contention control from handlitgan the other one with possibly arbitrarily large perfonoa
failed packets when compared with the standard IEEE 802.ddp, when the throughput demands are feasible. A strategy
DCF. In [4], the authors reverse-engineer the exponentigidate mechanism converging to the better Nash equilibrium
back-off based MAC protocols, and show that the contenti@perating point is also proposed in this work.
resolution protocols implicitly solve a noncooperativagdam o ) ) )
access game. This work provides an explicit expression fgr Summary of Key Contributions, Comparison with Previous
user utilities, and studies convergence dynamics for tieete WWork and Paper Organization
noncooperative random access game. Similar connectiens arl) Summary of Key Contribution®ur contributions in this
also made for the slotted ALOHA persistence probability ipaper can be summarized in detail as follows.
[5]. « We focus on layer 2 contention resolution strategies,
In addition to the above set of previous works focusing on and establishnew analytically tractable necessary and
strategy update mechanisms, there is a large body of papers sufficient conditions for a contention strategy profile
such as [13]-[18] concentrating more on the fundamental to be a Nash equilibrium over wireless channels with
equilibrium properties of the proposed random access game multipacket reception capability. Multipacket reception
models, including the existence and the uniqueness of Nash is an important feature of our model to capture proba-
equilibria. In [13], the authors propose a simple game thigor bilistic receptions in wireless multiple access channels.
contention resolution approach for a slotted ALOHA type We demonstrate tangible applications of these results
MAC layer over collision channels in which a common utility in practical communication scenarios, and provide en-
function parameterized by the cost of transmission atieisra gineering insights to achieve service differentiation and
transmission probabilities of all mobile users. The existe optimal throughput by designing user utility functions.
of a symmetricNash equilibrium at which the throughput Both perfect information and imperfect information game
performance of the proposed game theoretic MAC layer is settings are considered.
almost the same as that of a centrally controlled slottede We study the collective equilibrium network behavior for
ALOHA MAC layer is shown. large user populations, and obtain a Poisson-Bernoulli
The model in [13] has been extended in several directions type approximation for the limiting distribution of the to-
in subsequent works [14]-[18]. In [14], the authors analyze tal number of packet arrivals at Nash equilibrium, which



is an important summary statistic to stabilize multiplenation about the structure of equilibrium strategies, appeg
access networks. in these works, we obtain detailed necessary and sufficient
« For the random access game with imperfect informatigquilibrium conditions, and solve them, either analyticalr
structure, we show that a Nash equilibrium strategyumerically, to derive the shape of equilibrium contenties-
profile, if it exists, must be a threshold strategy profile inlution strategies. In addition, neither the asymptotidective
which users transmit only if their cost of packet failuresetwork behavior as in Section V nor the game formulations
is smaller than a threshold value. We provide explicivith imperfect information as in Section VI are considered i
expressions for setting equilibrium threshold values. Wé&4] and [18].
establish existence and uniqueness results in this cade, ar8) Paper Organization:The rest of the paper is organized
illustrate learning dynamics on the best-response pathas follows. Section Il describes the system model under
reveal information structure of the game and to learn hogonsideration. Equilibrium transmission strategies feneyal
to play a Nash equilibrium. In particular, we show thatireless channels with multipacket reception capabilitg a
symmetric equilibrium, desirable for fairness purposeanalyzed in Section Ill, and then applications of theseltgsu
exists but the best-response iteration may never lead t@ibng with various engineering insights are illustratedset-
even in symmetric communication scenarios when thetien 1V. Section V studies the collective equilibrium netiko
are multiple equilibria. behavior for a large user population. Section VI investgat
« This paper shows, for the first time, that a Braess-likgossible extensions of the basic model to imperfect inferma
paradox occurs if more information is publicly availableion random access games. Finally, Section VII concludes th
about user utility functions. That is, the channel througipaper.
put achieved under imperfect information turns out to
be higher than the one achieved under perfect informa-
tion. This result hints at an important design criterion
for next generation wireless random access protoco's:we Consider a Wireless multlp|e access Communication net-
Always maintain some level of randomness to better tar¥¥ork in which N mobile users, indexed b = {1,..., N},

selfishness in mobile users for higher target data ratesare selfishly contending for channel access to communicate
with a common base station (BS). The time is slotted, and

2) Comparison with Previous WorkEhese results improve packet transmissions are synchronized at the beginningabf e
the current state-of-the-art in game theory based randdime slot. The physical layer of the system is modeled by a
access design and analysis in several important ways. é&Jnltochastic channeéception matrixR = (r,, ) 1<n<~., where
the works focusing on iterative strategy update mechanisms, represents the probability thdt packets are received
and transient network behavior such as [2]-[4] and [12], Weorrectly givenn of them are transmitted. By convention,
establish necessary gnd sufﬁmeqt cond|t|on_s to be satibfie . is set to zero ifk > n. Note thathLo o = 1 for
steady-state equilibrium contention resolution straedsee g 5, < {1,...,N}. If ro > 0, we say that the channel is

Section Ill). These equilibrium conditions can be solveti@i  jmperfect(or, noisy) due to various random factors such as
analytically or numerically to obtain equilibrium transssion  fading, path-loss and background noise.

probabilities (see Section V), and then the network can bewe assume that all users involved in a collision of size

readily stabilized to a desired equilibrium by broadcastimaye identical packet success probabilities, which arergiv
these probabilities to mobile users. For the imperfect iy - — 1 S krn k. In such a multiple access setting, the

formation game formulation, even though the existence agfccess probability of a packet is expected to decrease with
unigueness of the equilibrium can be established, SUCle“HOSincreasing MAI. In this paper, we model this downward trend
form or numerical _squtions are not _readily ava_ilable,_ angy assumingyn4+1 < 7. In order to avoid trivialities, we also
therefore the transient network behavior is also invetiga 555 me that,,, is strictly smaller thany, for at least onex
by studying learning dynamics on the best-response paéh (§¢ {1,..., N — 1}. Otherwise, packet failures do not depend
Section VI). on the interference caused by other users, and the resulting
In comparison to works focusing on random acceasfy communication scenario is easy to analyze. The set of such
over collision channels such as [12], [13], [15], [16], [19Btochastic channel matrices will be representedby
and [20], the physical layer model considered in this paperlf mobile useri transmits a packet successfully, it receives
is more general, including the collision channel model asautility of u; ¢ units. If the transmission fails, it receives
special case. In addition, we consider both symmetric aadutility of w;  units. If it waits, it receives a utility of
asymmetric equilibrium strategies.g.,see the first example in u; i units. We assume that, s > u;, w > u; r, and use
Section 1V, rather than focusing only on symmetric contamti the vector notationu; = (u; s, u;w,u;r). These utilities
resolution strategies as in [13] and [19]. Analysis of asyettm are needed for setting up a selfish random access utility
ric equilibria is especially important for understandirmphto  maximization problem for the multiple access communigatio
provision differentiated services to different classesusérs scenario under consideration, as well as for allowing us to
in increasingly heterogenous wireless networks. Simdasur model different battery levels, delay and quality-of-sesv
problem formulation, multipacket reception capabilityte requirements of different users. Thandom access gamg
random access setting is also considered in [14] and [18]. &sdefined to be the tripl§ = (Z,{S;},c7 . {wi};cz), Where
compared to the existence results, which provide limitéorin S, = [«;, 5;] C [0,1] is the set from which user chooses a

Il. SYSTEM MODEL



transmission probabilityi.€., a contention resolution strategy)Then, p* is a Nash equilibrium if and only if the following
to access the wireless channel. Heti¢,and 3; are positive equilibrium conditions hold for alf € Z:

real numbers satisfying < o; < §; < 1, Vi € Z. We () If T, (R,p*;) > LWl thenpy = ;.

will interpret contention resolution strategies as péesise (i) If T, (R " ) _ g thena; < p* < f;
probabilities in an adaptive-persistent slotted ALOHA pro- i\ P F 0= P = P

Ui, —Us,
Ui, W — Ui, _
tocol in which persistence probabilities are adaptivelgaed (1) If L (R,p*;) < =i thenpy = a.

according to the derived equilibrium strategies. Pensiste Proof: See Appendix A. [ |
probability based contention resolution can also appratm Intuitively, the terms appearing on the left-hand sides of
a contention window based protocol [4]. these equilibrium conditions can be considered to be the

If the strategy sets; and utility vectorsu, of all users are contention signal that each mobile user receives from other
identical, we sayg is a symmetricrandom access game. Inusers in the network. A higher contention signal received
this case, the common strategy set from which all users ehody useri means less MAI is generated by other users, and
their transmission probabilities is given hy, 3], wherea and therefore the higher the channel access and the resultakgpa
B are positive real numbers satisfyiflg< o < § < 1. We success probabilities of useiare.
sayg is in thestandard formif utility vectors are in the form  In Section IV, we show that these equilibrium conditions
of u; = (1,0, —c;), wherec; > 0 is interpreted as the cost ofcan be solved to derive the form of equilibrium transmission
packet failure for uset. probabilities for specific channel models. Once these proba

The average utility that a user receives is a function of itglities are derived, two engineering approaches are plessi
transmission probability and the transmission probagdipf In the first one, a Stackelberg formulation can be considered
other users. LetS = [[,.;S; be the product set of userin which the BS moves first, and dictates the transmission
strategiesp be a vector of transmission probabilities & probabilities corresponding to a desired equilibrium poin
andU; (p) be the expected utility that thigh user receives asthe second approach, we can design a distributed strategy
a function ofp. The selfish optimization problem to be solvedipdate mechanism, possibly based on a Lyapunov function as
by useri is to findp; such thatU; (p;,p_;) > U; (p;,p_;) for in [4] and [12], to lead the network to a desired equilibrium.
all p; € S;, wherep_, represents the vector of transmissioiVe will illustrate one such possible strategy update meishan
probabilities of the other users. We say thet= (p}),., is in Section VI. Another important consequence of this theore
aNash equilibriumif and only if U; (p},p*;) > U; (p;,p*;) s a representation of random access games in terms of
forall i € Z andp; € S;. Let Ng (R) denote the set of equivalence classes.

Nash equilibria ofG when the channel reception matrix k& Proposition 1: Any random access gameg =
We say that two random access gantks j € {1,2}, are (Z,{Si};,cz,{ui},c7) iS equivalent to the standard form
equivalentif Ng, (R) = Ng, (R) for all R € R. random access gam§’ = (Z,{Si};cz,{u}};cz) With
¢ = YW ULE
Ui, S — Ui, W .
[1l. EQUILIBRIUM STRATEGIES FORGENERAL WIRELESS Proof: The proof follows directly from Theorem 1 by
CHANNELS observing that - = o=t [

; i i, F . .

In this section, we analyze equilibrium contention resolut Therefore, without loss of_any generality, we W'”, focusynl
strategies for general wireless channels and obtain mmyesém random access games In the standard form in the rest of
and sufficient conditions to be satisfied by a Nash equil'rbriuthe paper. Technically speaking, standard form randommsacce
transmission probability vector. In the next section, wdi wig2mes will be used to represent equivalence classes ofrando
iilustrate the applications of our results in more specifime 2CC€SS games, and analyzing the Nash equilibria of a standar
munication scenarios by solving these equilibrium coodii form game will amoun_t to analyzing the Nash equilibria of

The first critical issue to resolve is the existence of a Na&fndom access gamesin the same equivalence class. l,r,‘ th_e nex
equilibrium. To this end, a positive existence result disec theorem, we establish a symmetry property for equilibrium

follows from the Glicksberg fixed point theorem [21]. (Segontention resolution strategies in symmetric random sgce
also Theorem 1.2 in [22].) However, such existence resuf&Mes: . .
provide limited information about the structure of the Nash 1heorem 2:Let G be a symmetric random access game in
equilibria, and about selfish transmission probabilitiethase Standard form with the common strategy $et ] < [0, 1]
equilibria. Therefore, we establish necessary and suiticie?nd the common cost of packet failure- 0 for all users. If
conditions to be satisfied by a Nash equilibrium transmissi@” IS @ Nash equilibrium, thep? = p; for all p} andpj in
probability vector in the following theorem. We will then(® 5)- In particular, ifp} € (a, 5) forall i € Z, then all users
solve these conditions to obtain explicit representatiohs 2CC€SS the channel with the same transmission probapility

equilibrium contention resolution strategies in some &decS°Ving

cases. J(p*) = — )
Theorem 1:For a given channel reception matti® and a ’

strategy profilep, let

N where J (p) = 3770 i1 (N, pm (1—p)
Proof: See Appendix B. ]
Li(Rp_) =Y, > w I » II (=pr)-  we note that (1) is also sufficient far to be the common
n=l gngh_,  i€Tn—tiy  JEI-In equilibrium transmission probability for all users, as lieg



N-—1
YN <. 2)

n:l

by Theorem 1. Moreover, the solution to (1), if it exists, i®quilibrium when the channel is noise-frée,, 6 = 0. A user
unique. This can be readily seen by taking the derivative f 72 transmits with positive probability only if all other users
J(p) with respect top as in (2) Finally, a necessary andset their transmission probabilities to zero. More prdgjse
sufficient condition for the existence of the solution to (lfransmission probability vectg* at which there exists a user

is to haveJ(a) > 1% (B). i € 7? transmitting with a probability? e {1 - 1k g
andp; = 0 for all otherj # i is a Nash equnrbrlum o]
IV. APPLICATIONS AND DISCUSSION wherern = minc7s ¢;. The lower bound — ﬂ 1+ onpr is

We will now demonstrate tangible applications of the abov@10sen such that all usersdd are deterred from transmission,
general equilibrium results in more specific communicatiodd it is easy to show that this lower bound is always positive
scenarios. We start our discussion with equilibrium cotieen ~ There are interesting Nash equilibria at which a suigét
resolution strategies for imperfect collision channels. of users inZ* transmit with positive probability, while others

exercise zero transmission probability as their contentes-
*
A. Selfish Random Access over Imperfect Collision ChannolUtlon strategies. Lep™ be such a Nash equilibrium. Then,
Eontention resolution strategies of usersZih® must satisfy

One of the most commonly studied channel models for mithe second equilibrium condition, which leads to closednfor
tiple access communication is the classical collision cean o Tie, (1 3o YO w30
model, perhaps mainly due to its analytical tractability db- expressiong; = 1 — = (ﬁ@ (I ' )) Vi €1,
taining practical control mechanisms achieving the maximuwhere the set functiorp : 2T’ — {0} — R, is defined as
stable throughput of such systeresy.,see [7], [8] and [11] for ¢ (Z30) = Hzezso - for all non-empty subsetg*° of
more details. We now look briefly at equilibrium contentiory3, (Here, 9% denote the set of all subsets Bt.) Note that
resolution strategies for imperfect wireless collisiomchels. I_WW
The derived Nash equilibrium strategies can, in turn, belus
in a drift analysis to determine the stability of the resigti = < 1, which further impliesy (Z* O) < 1—46. Therefore,
Markovian communication system with selfish mobile usergthen|Z*°| =1, we setp} to 1 for i € Z* without causing
However, we will not pursue this direction in the current@ap any ambiguity. These transmission probabilities also show

1) Channel Model:n the collision channel model, a packeglifferent services are provisioned to different users ingiog
transmission is assumed to be successful only if there i@ different traffic classes at the equilibrium. For example
no other user attempting to transmit simultaneously. Hend® interpretinge; andp; as the common delay price (arising
Tmk = G0k if n > 2, whered;; = 1if i = j, and zero from packet collisions) and the channel access probatfdity

<

%uch a solution is feasible only ( o (T% 0))

otherwise. We letr;o = 6 andr,; = 1 — 6 for some classi users, respectively, we expect users carrying more time-

6 € [0,1]. Here, the parameted can be interpreted as asensitive services such as real-time video streaming te hav

measure of the noise level summarizing all random factdgyger dlelay prrz:le+s )and access the channel more frequently
Pl _ Ci)Cj

such as background noise, fading and path-loss affectitigleed,7—+ = ree <1 for ¢; > ¢;.

packet receptions. The smaller thes, the less noise is present  3) Numerical Results and Discussioin Fig. 1, we illus-
in the system, and a packet transmission is more likely to B@te equilibrium strategies on different partitionsiif for the
successful if there is no other transmission attempt. On thgo-user communication scenario. FdF > 2, we can con-

other hand, iff is large, it is more likely that a packet failsceptually visualize a similar partition @ into 2V box-like

even if there is no other user tl’ansmlttlng S|mu|tane0us|y reg|0ns In par“cu'ar if a|b s are Sma” ie., 0< G < 10‘9

2) Equilibrium Contention Resolution StrategieBy set- for all ; ¢ Z, then the users access the channel with positive
ting the strategy sets t¢0,1], we can simplify the equi- probability. On the other hand, as thgs increase above the
librium conditions in Theorem 1 as followg* is @ Nash critical level 152, users start to switch off by setting their
equilibrium if and only if, for alli € Z, it satisfies (i) transmission probabilities to zero. If the channel quaditghe
pp = 1if (1 =0Tl (1-p;) > 15, (i) p; € [0,1] costs of failed packets are changing over time, this behasio
if (1 -60)[1,,0-p;) = ¥, and (i) p; = 0 if reminiscent of ampportunistic random accesmlicy in which
(1 —0)H (1 pj) lfric selfish users access the channel opportunistically when the

We can further simplify these conditions by dividing usershannel quality is above athreshold determrned by the adsts
|nto three disjoint groups given bf* = {zeI ¢ > 9}, packet failuresj.e.,when1 — 0 T

= {i€el:¢;=%%} andI® = {ieT:¢ < 59}. interpretation, we can say that when the channel is in a deep
Users inZ' have costs so large that they never transnfiide, the users with high costs cannot be provisioned for the
even if no other user is contending for channel access.réquired level of quality-of-service regardless of the amtaf
I' = Z, the only Nash equilibrium is the one at whichcontention from other users, and therefore traffic from them

none of the users transmits, which never arises as a Nasttompletely blocked and all communication resources are




c2 A
In this region, In this region,
the only Nash the only Nash
equilibrium is (1, 0). equilibrium is (0, 0).
1-0 d
0

In this region,3 Nash
equilibria can emerge:
(1,0), (0,1) andp™
with 0 < py,p5 < 1.
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Fig. 1. Possible equilibrium contention resolution sgae on different
partitions ofRi for the imperfect collision channel with two users; =

1— Tlelfr% wherei, —i € {1,2} andi # —i.

distributed among other users with low costs until the cleanr
recovers from the deep fade.

In Fig. 2, we plot the equilibrium transmission probabdgti
for the homogenous case versudly setting N to 5. We
focus only on the equilibrium at which all users transmithwit
the same positive probability, which corresponds to the fz
allocation of communication resources. The equilibriuamg-

o A . B Y
mission probability is, then, given by =1 — ¥~/ =5 1.

Equilibrium Transmission Probability

Equilibrium Throughput
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As expected, when the noise levglincreases, transmissionFig. 2. E _ gu
probabilities and the system throughput measured in packgirrespondmg system throughput (bottom figure). Impédeltision channels

per time slot decrease. In all cases, small values téad
to high transmission probabilities, which in turn results i
excessive packet collisions and low throughput. Similarly
large values ofc result in channel under-utilization, and
therefore low throughput. In the middle-ground, there tsxis
an optimal level ofc maximizing the system throughput. It
is easy to see that this maximum throughput is also the be
that we can achieve via a central controller since transamss
probabilities are continuous functions of costs. Themfoio
loss is incurred by selfish operation if selfish transmissior
probabilities can be manipulated to drive the system to th
optimal operating point.

For example, Fig. 2 suggests that wheis small, a central
controller can use the parameteas a signaling device to ma-
nipulate transmission probabilities, and drive the systethe
optimal operating point, either by declaring a fictitiousseo

Equilibrium Throughput

2 3
Cost of Packet Failure

Equilibrium contention resolution strategies (tiigure) and the

with N = 5. The unit of throughput is normalized to packets per timé. slo

- 'edeclared= 0.8
- edeclared: 0.5

“““ edcclurcd: 0.2

ol =—0dcclarca= 0

12 14

O‘.8 1
Cost of Packet Failure

0.6 16 18

2

level to be greater than the true noise level, or by introdgiCi Fig. 3. System throughput when selfish users are manipulateticlaring
artificial noise during the channel estimation phase_ Thiistitious noise levels. Perfect collision channel witi = 5. The unit of

approach will decrease users’ greediness, eliminate sixees
collisions and increase the system throughput. This ojperat
can also be considered as a design process for user uti
functions based on changing the effective value tf achieve
optimal performance. Figure 3 illustrates that the thrqugh

be achieved by declaring fictitious noise level8, 0.5 and0.2

throughput is normalized to packets per time slot.

it
ESYSeIfish Random Access fBrout-of-N Channels

1) Channel Model:The second application of our results
increases significantly, and the same maximum throughput caill be to a special type of multipacket reception channel

in which all packets can be reconstructed successfully with

whenc is around0.1,0.27 and 0.5, respectively, for a noise- probability 1 — 6,, if the collision sizen is smaller than or

free channel.

equal toT € {1,2,--- , N}. On the other hand, it > T, all
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of throughput is normalized to packets per time slot.

packets are destroyed together. If the noise parangtes 0 of N and 6, varying with n. As expected, equilibrium

for all n, then this is the channel model studied in [23] anttansmission probabilities and the corresponding thrpugh

[24]. Such channels can be implemented by udihgut-of-N  increase withT". More importantly, the maximum achievable
codes [25]. throughput increases more than linearly with We find this

2) Equilibrium Contention Resolution Strategiedfe will maximum throughput to be aroudd9, 0.9, 1.51 and6.97 for
focus only on the homogenous case and the Nash equilld= 1, 2,3 and9, respectively. Fof large wherg = 0.25, we
rium at which all users access the channel with positiaso observe a severe cut-off in transmission probatlsiliied
probability for illustrative purposes, but a similar argiy a corresponding sharp decrease in the equilibrium throughp
can be conducted for the heterogenous case and other ewmien the cost of packet failure comes close to the critical
libria as in the collision channel model above. We set tHevel 152, On the other hand, throughput does not exhibit
strategy sets td0,1]. In this case,J(p) in (1) is given such an abrupt decrease with increasing cost for the noise-
by J(p) = 305 (1—=0ps1) (N Hp* (1—p)¥ 17" The free channel. This indicates the importance of the calibmat
common equilibrium transmission probability is obtained of costs and noise levels in order to avoid high penalty in
by solving J (p*) = < T <N, then J(1) = 0, and it equilibrium throughput for noisyl'-out-of-N' channels with
is enough to have/ (0 ) =1- 6, > +< for the existence of large multipacket reception capability.

p* solvingJ(p*) = 1+c Otherwise J( )= 1- On, and we _ _ _ o o

requirel —6; > + C. Selfish Mobile Users with Pairwise Transmissions

(for T= N) then users transmlt with probablllty one, and if 1) Channel Model:As a final example, we consider pair-
— 61 < i1 (for T' < N), they never transmit. wise transmissions in which the positions df transmitter-

3) Numencal Results and Discussiolm Fig. 4, we plotthe receiver pairs{TX;, RX; }Z , are independently and identi-
equilibrium strategies and the corresponding system titrou cally distributed over a network domain. Transmission from
put for noise-free channels and for the channels with thHEX; is successful if there is no other transmitter closer to
common noise parametdr = 0.25 when N = 10. Again, RX; thanTX;, and the channel noise is small enough, which
the unit of throughput is normalized to packets per timeill be assumed to happen with probability— 6. Here, the
slot. Similar conclusions continue to hold for other valuesiterpretation ofé is the same as above. This is the first
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example studied in [9], and shows the generality of our tesul V. ASYMPTOTIC NETWORK BEHAVIOR
beyond the simple multiple access channel with one commo
receiver and multiple transmitters. More applications af o
results in Section Il are possible,g.,wireless channels with
capture and frequency hopping spread spectrum systems

we do not pursue this direction due to space limitation.

"For the maximum stable throughput analysis in multiple ac-
cess networks, it is commonly assumed that there is an iafinit
opulation of users and the number of packet arrivals from
tphieﬁ‘n follows a Poisson lave.g.,see [7], [8] and [11]. In the
absence of any knowledge of micro-level rules governing use
2) Equilibrium Contention Resolution StrategieBor il- behavior, such a Poisson assumption for predicting cofect
lustrative purposes, we again focus on the homogenous chsbavior of an infinite population of users is very natural to
and the symmetric equilibrium at which all users accesgake by the law of rare events [26], [27].
the channel with positive probability. We set the strategy However, having established micro-level contention nesol
sets to [0,1]. For this set-up, we have, = 1%" and tion strategies, we can now verify whether or not the Poisson
J(p) = 27]:[:_01 i;ﬁ(Nfl)png — p)N=1="_ The equilibrium distribution is still valid to approximate the total numbefr

transmission probabiﬁty is obtained by solvidgp*) = < packet arrivals from an infinite population of selfish uséns.

p* existsifJ(0) = 1-6 > 1% > J(1) = 200F1-6 < 1_}: fact, it is shown in [15] that such an approximation holds

they transmit with for.identical users. In this_ seqtion, we will establish aitm
Poisson-Bernoulli approximation result for heterogenasess
in which the cost of packet failure of uséris ¢; > 0.

3) Numerical Results and Discussiom Fig. 5, we show | establishing our approximation result, we focus only on
equilibrium transmission probabilities and the corresppg  nojse-free collision channels and the equilibrium at wradih
throughputs in packets per time slot for different values @fsers transmit with positive probability. We assume that co
6 when there areV = 5 transmitter-receiver pairs in theparameters of initial users do not change as we add more users
network. Similar conclusions continue to hold for otherues g the system. Extensions to imperfect collision channets a
of N. To avoid repetition, we will mention only the maingther equilibria with an infinite population of users areiai.
differences between this scenario and the two previous. ongegiension to general channel models is a more challenging
In the current case, there is an interval obround zero in f,tyre research direction.
which transmission probabilities become one. The length ofthe main result of this section is given in Theorem 3. For
this interval is determined byand .V, and is given byy'=%.  any given two discrete random variablés and Y taking
On the other hand, transmission with probability one cageariy,5jyes in a countable sef, drv(X,Y) represents théotal
only in the limit whenc goes to zero in Figs. 2 and 4. variation distancebetween their distributiong’y and Fy-,

The behavior of the equilibrium throughput in this caséefined asiry (X,Y) = > - |[Fx(2) — Fy(z)|. Theorem
looks quite different from the ones in previous example8. indicates that, even though a pure Poisson approximation
This behavior arises because the average number of sugcessly not work well, a mixture of a Poisson distribution
receptions with pairwise transmissions is always equaH@ with finitely many Bernoulli distributions serves as a good
for any n since~, = 1%" Therefore, when transmissionapproximation for the total number of packet arrivals from a
probabilities are low, the network becomes underutilizad ainfinite population of heterogenous users.
the overall network throughput decreases. On the other,handTheorem 3:Let p3, be a Nash equilibrium at which all
when transmission probabilities are high, there always ausers transmit with positive probability. #fy, exists for allV
active transmitter-receiver pairs for which the networl cdarge enough, then the total number of packet arrivalsat
support a throughput of — 4. P} converges in distribution to a real valued random variable

users never transmit, and %f;,—" > 1jc,
probability one.
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Y if and only if imy_;e0 Zf.vzl pin € (0,00). Moreover, Theorem 4:LetT; (R, s_;) be as in (3). A strategy profile
for any e > 0, there exist a Poisson random variable()\) s* is a Nash equilibrium if and only if; is a threshold strategy
with mean\ and an indepengent finite collection Ic()f Bernoullin the forms; (c;) = Bil{ciq; Tpilye, iy T ail{cpﬁ}
random variable§Bern(qx)};,_, with means{qx},_; such almost surely (with respect td;) for all i, where 7} =
that dry gyv Po(}) + 25:1 Bern (Qk)) <e % andp; € [, Bi].

Proof: See Appendix C. roof- See Appendix D. ]

Intuitively, this result can be interpreted as follows. Tée
is a homogenous part of the population consisting of users
with similar costs. Packet arrivals from these users behave
like a Poisson random process collectively. On the otherThere are several important theoretical and practicaliimpl
hand, the rest of the users are more heterogeneous, andcaiions of Theorem 4. First of all, it allows us to restrice th
number of packet arrivals from them can be approximated $@arch for equilibrium strategies to only threshold sgete
a summation of Bernoulli random variables. In fact, in ouFherefore, by viewing the random access game as a game in
proof in Appendix C, we showed that the existence of a Nagfhich users choose a threshold, we can write the best-respon
equilibrium with an infinite population of users necessitat function B : RY — RY, with a slight abuse of notation,
costs of packet failures to have only one accumulation poiais B (1) = (—xr-0. [aBro) ... [xRrn) )
. . ! T (R,7-1)" 1-T2(R,7_2) 1-T'n(R,7—-nN)

The Poisson and Bernoulli parameters can be fine tunedgg restricting thresholds to take values only frdm A] for
increase the approximation accuracy. Moreover, by apglyiBome large but finite positive constahtand assuming all be-
the Stein-Chen approximation [27] to the Bernoulli part, Wgef distributions are continuous, we can use the Brouwesdfix
can further reduce the Poisson-Bernoulli approximatiom topgint theorem to conclude th& has at least one fixed point,
pure Poisson approximation, albeit with greater approkma \yhich is the Nash equilibrium of the random access game.

Existence and Uniqueness of the Nash Equilibria

error. Note that searching for equilibrium thresholds in a closed
interval is simply a technical requirement to apply the Breu
VI. RANDOM ACCESS WITHIMPERFECTCOST fixed point theorem but is not a severe practical limitatikn.
INFORMATION is always correct that’; (R,7*,) < I'; (R,0) = ry1, and

Our analysis in previous sections depended implicitly atherefore as long as the channel is imperfect with < 1

the perfect information assumption in which all users knodue to various random effects such as fading, path-loss and

the costs of all other users perfectly. In this section, wk wibackground noise, the best-response threshold of a user nev

show how we can relax this perfect information assumptiorhecomes larger thaﬁ%. The same argument also shows the
existence of a symmetric Nash equilibrium for the symmetric

A. Imperfect Information Game Formulation and Equilibriung@me in which all users have the same belief distribution to

Strategies predict the costs of others. Moreover, by appealing to [28],

Jve can also ensure the unigueness of the Nash equilibrium

without loss of generality, and assume thatis randomly i'the Jacobian ofB (]leoes not have an eiger_w\_/alue equal to

' 1 for all = € [0,A]". However, this condition must be

distributed according to a cost distributidfy but is perfectly .
. . checked case-by-case for each channel model, which can be
known by user; before the start of a transmission. On the ) .
. a computationally extensive task.
other hand, userdoes not know the cost values of other users
exactly_but only has_aset of bgllef_d|str|but|o{1§i,j}jezi{i} - Bestresponse Learmning and Discussion
to predict them. This formulation is general enough to adnfit: p g
having belief distributions different than true cost diatitions. On the practical side, Theorem 4 implies that usaran
In this Bayesian game setting, the strategy of uses a learn to play its best-response against its opponentsesgies
functions; that maps:; € (0, 00) to a transmission probability by estimating the congestion sigigl (R, ;) even if it fails
pi € [ay, Bi]. With a slight abuse of notation, we will still to predict their strategies perfectly at the beginning & th
represent the strategy set of useby S;. As is standard, game. Intuitively[’; (R, 7_;) can be thought of as a summary
a strategy profiles* is said to be a Nash equilibrium if statistic summarizing the strategies of other users, and it
s; is a solution of the selfish utility maximization problemknowledge is sufficient for usei to play its best-response.
maxs,es; Ui (si,sii) for all ¢ € Z. In contrast to our analysisT; (R, 7_;) can be estimated by counting the number of
in Section lll, this optimization problem is now over infi@it successful transmissions, or the number of idle slots for
dimensional function spaces. However, as establisheddn tollision channels as in [3], which leads to decoupling of
next theorem, equilibrium strategy profiles can be idemtifieccontention resolution from handling failed transmissiddisch

by using a threshold vectar* in RY. a learning process on the best-response path, if it conserge

We focus on the random access game in the standard f
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Fig. 6. For the imperfect collision channel with ;1 = 0.75, the left figures illustrate best-response functions ofrsideand 2, while the right figures
illustrate the learning process leading to Nash equilitBiglief distributions are exponential with parametars- 1 (top figures) and\ = 0.5 (bottom figures).

leads the network to an equilibrium operating point [29]jath T'; (R, 75(t)). Then, use2 moves and updates its threshold to

is what we illustrate next. mt+1) = % by estimatingl’s (R, 7, (¢t + 1)).

In Fig. 6, a numerical application is illustrated for thdterationt¢ + 1 terminates after use? updates its threshold.
imperfect collision channel in which two users having thAs a result, the time-scale of each iteration corresponds to
same exponential belief distribution with parameder- 0, several tens of time-slots in a physical system allowingsise
i.e., F12(c) = Fai(c) = F(c) = 1 —e~?¢, contend for the to accurately estimate the congestion signals. Based @e the

channel access. We set; to 0.75. observations, we conclude that the symmetric equilibrium,

Even for this simple symmetric two-user case, the resultirﬁ’gj"‘s"abIe for fairmess purposes, exists but may never appea
network behavior can be quite complicated. To start wit§Ven in symmetric communication scenarios when there are
depending on the value of the equilibrium does not need tomultiple equilibria.
be unique or symmetric. For example, in the top left figure
in Fig. 6, we show the communication scenario in whic
A = 1 and the best-response functions of users intersect
three different points, two of which correspond to asyminetr

On the other hand, when there is a unique equilibrium,
hich is automatically symmetric due to the symmetry in
tf% problem, it is also the stable equilibrium in this case.

- ) : i In the bottom left figure in Fig. 6, we show the scenario in
equilibria at which one user sets its threshold 1o, while the .0\~ (= 214 the best-response functions intersect at

other ?nl:?I sets it ta. Ill Motrecl))vetr thetsymmetrlc Iet?u'l'b”url?the unique equilibriumr* = (0.91,0.91). In the bottom right
is unstable,l.e., small perturbations to this equilibrium wi figure in Fig. 6, we show learning curves with different iaiti

i
lead the system o converge to an asymmetric eOIUIIIbrIuE'gnditions, and leading to the unique symmetric equilitoriu

wher_l _there are _mu|t|p|e equilibria. That IS, staru_n_g _frorQVe note that convergence to the equilibrium in both cases of
any initial condition except for the symmetric equ'“b”ummulnple equilibria and unique equilibrium is fast, and ynl
the learning process on the best-response path converge§ak%s around0 iterations.

only one of these asymmetric equilibria. For example,

the top right figure in Fig. 6, we show two learning curves Further insight into this behavior can be gained by looking
with different initial conditions leading to these asymnet at the two-step-forward best-response functibriet B; (7_;)
equilibria. At iterationt + 1, userl moves first and updatespe the best-response of useagainst its opponent’s strategy

its threshold tor; (¢t + 1) % by estimating 7—;. Then,B; (7_;) = c“—niinl andG (1) = By (B2 (11))
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is equal to a noisy collision channel with noise parametérfor perfect
Gr) = 1,1 and imperfect_infor_mation random access games in Fig. 8. We
1 ox ( ATy 1 ) ., ’ setN to 2 for simplicity. Recall that; o = 6 andr; ; = 1—6.
Pexm—ry b In the imperfect information case, both users have the same
Intuitively, G (m1) is the threshold value that usérsets exponential belief distribution with parametar > 0, i.e.,
after user2 chooses its best-response againstTherefore, if Fia(c) = Fy1(c) = F(c) = 1 —e~. Furthermore, transmis-
G (71(t)) > 71(t), then userl increases its threshold in thesion costs are also randomly generated according(tg. As
next iteration, whereas it decreases itGf(r1(t)) < m1(¢t). explained above, users in the imperfect information random
If G(m1(t)) = m1(¢), then the system is in equilibrium. Inaccess game set their best-response thresholds to maximize
Fig. 7, for A = 1, we show the behavior off in [0,3] their expected utilities by exploiting the statisticalanation
by further zooming in on its behavior around probable usgiven by their belief distributions about their opponeraisd
1 equilibrium threshold values in the inset figures.7if is then decide to transmit or not after observing their redlizest
anywhere in between.1 and 0.65, even if arbitrarily close values. For fairness of comparison, transmission protiaiil
to 0.65, user1 keeps it decreasing in the next iteration untiand the corresponding equilibrium throughput are plotted
the system achieves the equilibriufd.1,2.1). Similarly, it against the mean cost vaIlJ;\e in the imperfect information
keeps it increasing until the system achieves the equilibri random access game, and only the symmetric equilibrium is
(2.1,0.1) if 71 € (0.65,2.1). Similar explanations hold if;  considered.
is below0.1 or above2.1. Hence, the symmetric equilibrium  Surprisingly, the equilibrium throughput performance
is unstable, and only the asymmetric equilibria appear asaghieved under imperfect cost information is larger thaat th
result of the best-response learning process. On the ogimel; h achieved under perfect cost information. In particularewh
when the equilibrium is unique, similar arguments show thabmpared to the perfect information case, users under im-
it is stable and all initial threshold pairs are in the domain perfect cost information contend for the channel access les
attraction of this equilibrium for this case. aggressively as the mean cost value approaches zero, and
Finally, we compare equilibrium contention resolutioronversely become more aggressive as the mean cost value
strategies and the corresponding throughput performavee ogrows to infinity. To put it in other words, providing selfish
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mobile users with more information about their opponentsature of our model to capture probabilistic receptions in
makes them unnecessarily more risk averse for high valugseless multiple access systems. We have obtained negessa
of the transmission cost, and more risk-taking for low valueand sufficient conditions for a Nash equilibrium strategy
of the transmission cost. Indeed, this phenomenon is simifarofile. To demonstrate tangible applications, these #xjitim

to the Braess-like paradoxes observed in both the engimeertonditions have been solved for specific channel models to
and applied game theory literature [30]-[32], and hints mt alerive contention resolution strategies and to analyze the
important design criterion for next generation wirelessgd@m resulting network performance. Various engineering intsg
access protocols: Always maintain some level of randomnesgh as designing utility functions to maximize communica-
to better tame selfishness in mobile users for higher ta@et dtion rates and to achieve service differentiation have been

rates. illustrated based on the derived equilibrium strategiege W
have also studied the asymptotic collective equilibrium be
D. Future Research Directions havior, and established a Poisson-Bernoulli approximdtio

. . . . . the total number of packet arrivals from an infinite selfish
Before concludmg th's sect|c_)n, we mgnt_|on pnefly SOM&ser population. Finally, we have examined the contention

future research directions of Interest W't_h'n this BayBsigeqqution problem with imperfect information, derivedeth

random access game formulation. One issue of |nterestf6§m of equilibrium strategies, established their exiseeand

to reveal more comprehenswe learning dynamics n m_or?liqueness, and analyzed a strategy update mechanism based
general channel settings. Even though the same principles

and techniques can be applied, the system behavior Observedbest—response dynamics converging to an equilibrium.
for imperfect collision channels does not necessarily rekte

to other channel models in a straightforwvard manner. For
example, the uniqueness of a Nash equilibrium does rét R. Bender and G. Sandstrom, *“Wireless carriers refine

: : i 4G technology,” The Wall Street Journal Available Online:
always imply that users can learn to play it. When the calfisi . o ine e domiarticle/SB100014240527487BEB5 75109624056

channel is noise-free, the equilibrium is unique [16] but gs4264.htmi, Mar 2010.
unstable. Similarly, when the number of users increases, fAl T. Cui, L. Chen and S. H. Low, “A game-theoretic framewdok medium

set of Nash equilibria becomes more complicated to analyzegce‘;)‘iszso%%mm”EEE J. Sel. Areas Communol. 26, no. 7, pp. 1116-1127,

For arbitrary numbers of users, determining stable eqialib [3] L. chen, S. H. Low and J. C. Doyle, “Random access game agdium
and identifying initial conditions leading to such equild  access control designEEE/ACM Trans. Netwyvol. 18, no. 4, Aug 2010.

: ; P [4] J.-W. Lee, A. Tang, J. Huang, M. Chiang and A. R. CaldekhdReverse-
with required performance criteria are other future resear engineering MAC: A non-cooperative game moddEEE J. Sel. Areas

problems of interest. Solving these problems could lead tocommun,.vol. 25, no. 6, pp. 1135-1147, Aug 2007.
designs for efficient random access control mechanismapandp] J. Barcelo, H. Inaltekin and B. Bellalta, “Obey or play:symptotic

; ; ot equivalence of slotted Aloha with a game theoretic contentinodel,”
reverse/forward engineering [4], [5] of existing ones tfoece IEEE Commun. Lettvol. 15, no. 6, pp. 623-625, June 2011,

desirable system performance. [6] N. Abramson, “The Aloha system - another alternative &mmputer
communications,” inFall Joint Computer Conf., AFIPS Conf. Proaol.
37, pp. 281-285, 1970.
VII. CONCLUSION [7] B. Hajek and T. Van Loon, “Decentralized dynamic contodla multi-
In this paper, we have focused on layer 2 contention access broadcast channdEEE Trans. Autom. Contrplvol. AC-27, no.
. . . . 3, pp. 559-569, June 1982.
resolution strategies for wireless networks with multlfm:c [8] J. N. Tsitsiklis, “Analysis of a multiaccess control sche,” |[EEE Trans.

reception. The multipacket reception capability is an inbgat Autom. Contral vol. AC-32, no. 11, pp. 1017-1020, Nov 1987.
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APPENDIXA
PROOF OFTHEOREM 1

We will first obtain an explicit representation for expected

nature ofl’; R,pj,pt{i_j}> as a function ofp;. Equation 1
follows after some simplifications.

APPENDIXC
PROOF OFTHEOREM 3

We will first obtain an important lemma showing that the
existence of a Nash equilibrium with an infinite populatidn o
users having positive transmission probabilities netatss a
kind of homogeneity in this population.

Lemma 1:Let & 1fr—c and¢ = inf;>; &;. If py exists
for all N large enough, thelim;_, ., & = £ € (0,1).

Proof: Let §(N) = minj<;<y . By using Theorem

user utilities. Letl’; (R, p,i) be the probability that a packetl (see also our discussion in Section IV for collision chan-
transmission from userbecomes successful given the channelels), we can write the equilibrium transmission probé&bai
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n=0 InCT_g; j}: k€Zn  k€l_(ij3—1In
[ Zn|=n
2 2
{p;,N}i Ias i g(—N 1 1 —6
c 1 falv=t) U Tewy) T
ST (V)
* — g € €
P} :1_@1 & < L 1og<1+—)exp<1og<1+—))

N 1;[1 J N-1 &(N) §(N)

for all i € = T Hence, existence op%, requiresé(N) > < ]5\7](_)1 (1+ 2) log (1+ g)
]‘[1 1 gz . Otherwise, there exists at least one user with This implies that

an infeasible probability assignment. We first show thas )
a limit point of {&},.,. If not, for all ¢ > 0, there exists /N N-T
a sufficiently IargeM_su?h that¢; > €+ ¢ for all i > M. &

=1

.. . N N—-1 -M j—
This mphes(HiTléi) > (]_[Z 1&) €+~ T, ) (1+0(9(N))—O(i)—0<g(N))>
Thus, (Hl 1 512 becomes larger thag- 5, and therefore - N N N2
larger thar¢ (IV), for all sufficiently largeV, which contradicts >&(N)

the existence opy,. A similar contradiction also shows thatfor gl sufficiently large N, which is another contradiction.

§€(0,1). . S Hence,¢ is the only limit point of{¢;},-,, which concludes
Similarly, we can show thag is the only limit point of the proof of the lemma. - n

{&i}i>,- Otherwise, let be another limit point fo{&;},~;,  we will now prove the if direction. Suppose

andg(N) be the function showing the number &fs belong- limy o 2{11)*1\/ = m € (0,00) exists. Let Fy be

ing to f(1< —6(+e) forl<i< é\] and.soml_es > O.smfall the distribution of Y. Then, by the Markov inequality,

_ _ 2
enough satisfying — 2e > £ + €. Since( is a limit point for Pri{vy > M} < E[(Yn—E[Yn])?] _ O(#) Thus,

i }.>1, 9(IN) grows to infinity. Observe th@t(V) € [¢,&+e ) : (M—E[YN])? N )
igr}aﬁ%sffgiciér?tly largeN. Tr:/en, AN) € [6,6+€) {Fn}y>o is a tight sequence of distributions. By using

this tightness result, we will now show thdty converges,

N N1 N g(N) o(N) in variational distance, to a probability distributiaf. Let
(H &) > EN)TTT (E(N) + )T P! o = limy_,o p 5, Which can be shown to exist by using
the above lemma. Then, we also haley;_, . pf ., = 0.
. € e Thus, for any givere > 0, we can choose( Iargye enough
= {(N)-E(N)~- (1+§(N)) so thatmaxi>x plo < 55 Let Ay = SV . pfy and

A = limpy_ o An. Then, by using metric properties of total

It is enough to show thag(N)ﬁ 1 - 0(%) and variation distance and Le Cam’s inequality, we can bound

y()

(1 + ﬁ) o140 to complete the proof. Since .
the proofs are SImI|E}I’ )we WI|| focus only on the proof for the drv | Yn,Po(A) + Z Bern (Pi,oo)
9N X

N—-1

relation (1 + g(j\,)) =1+0(4M) To this end, the
following chain of equalities and |nequaI|t|es can be apgai 25 M SUPN o0 dTv (YN’PO( )+ 30050 Bern (] oo)) <

by using the Taylor series expansion for the logarithm aed tBA maxi>x p; o < €. This implies thaf{ Fiv } -, is a Cauchy
fact thatg(N) < N — 1 for all sufficiently largeN: sequence with respect to the metrg,, and therefore, by
using the tightness result above, a limiting probabilitgtidi

€ N bution F' to which Fiy converges exists. This also establishes
1—(14+ — . . . L
( g(N)) the Poisson-Bernoulli approximation in Theorem 3.
Now, we prove thenly if part. In fact, this will be a general
_ ll—exP ( g(\V) log (1+ € )) result for any sequence of triangular arrays of Bernoulli
N-1 §(N) random variables. Suppose ndw; converges in distribution
_ g(N) 1 L4 € . 1+l g(N) 1 14 € to areal valued’. Letmy = E[Yn] andX; y = Y; N —pi N,
T N-1 £(N) AN_—1 8 £(N) whereY; n is the Bernoulli random variable with mean .
1 [ g(N 2 e \2 First, _ass_umélmsupNﬂoo my = oo. By using Ho_Ider’s in-
+— —) log (1 + > + equality, it can be shown that there exist§ a> 0, which is the
3IAN -1 £(N) same for allp; x, such that we have [e7"*i~ ] < 1+¢2p;
g(N) | ] € 1 g(N) | ] € forall t € (0,d1). By using this result and Markov’s inequality,
Snopesltt E(N) tvorest Tt &(N) we can further show thalPr {Yy < =x} < e~ i XiLipin



for all ¢ € (0,61). Sincelimsupy_,,,mny = 00, We can
find a subsequencéme};‘;l such thatmy, > k. Then,
Pr{Yn, <50} < et . By the Borel-Cantelli lemma,
this implies Yy, diverges toco almost surely, which is a
contradiction. Thus, we must hadansupy_, .. my < o0.
This implies uniform integrability ofYy. Since the conver-

gence in distribution of uniformly integrable random vari

ables also implies the convergence in mean [26], we ha

limy_o E [YN] =E [Y] < oQ.
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Assumes* is a Nash equilibrium. It is easy to see tha@
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