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Abstract—This paper analyzes layer 2 contention resolution
strategies for wireless networks with multipacket reception by
using noncooperative game theory. Necessary and sufficient
conditions are obtained for a strategy profile to be a Nash
equilibrium. Applications of the derived equilibrium cond itions
to predict selfish behavior and the resulting equilibrium perfor-
mance are illustrated in specific communication scenarios along
with various design insights. The collective equilibrium behavior
of wireless networks with large user populations is also studied,
and a Poisson-Bernoulli type approximation is obtained forthe
total number of packet arrivals. Finally, random access control
with imperfect information structure is considered, the form
of equilibrium strategies as well as uniqueness and existence
results for general wireless channel models are obtained, and the
best-response learning dynamics achieving an equilibriumare
illustrated in specific instances.

Index Terms—Slotted ALOHA, multipacket reception, game
theory, contention resolution, medium access control

I. I NTRODUCTION

Fourth generation (4G) wireless communication networks
empowered with a new generation of open source oper-

ating systems are expected to transform mobile handsets into
intelligent terminals for applications such as high-definition
video streaming, online gaming, etc. [1]. An emerging vitalde-
sign challenge in these networks is the distributed coordination
and control of increasingly autonomous and heterogenous mo-
bile terminals for efficient allocation of limited communication
resources such as bandwidth and power. Game theory and the
related field of mechanism design have the potential to guide
engineering efforts to overcome such challenges by providing
a bottom-up analytical and principled approach to the design
of local operation rules and to the verification of resulting
collective network behavior through equilibrium analyses.

In particular, recent works [2]-[5] illustrate how game theory
provides new insights to reverse/forward engineer existing
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medium access control (MAC) protocols, better fairness and
service differentiation, higher throughput, and a mechanism
by which to decouple contention control from handling failed
packets for a class of multiple access networks. Motivated by
these recent results, this paper also focuses on layer 2 MAC
protocols for next generation wireless networks, and provides
newequilibrium results and design insights for such protocols
based on noncooperative game theory.

Our main contribution is the derivation of necessary and
sufficient Nash equilibrium conditions for setting persistence
probabilities in an adaptivep-persistent slotted ALOHA pro-
tocol in which persistence probabilities are adaptively updated
according to the derived equilibrium strategies. These equilib-
rium conditions are given for general wireless channels with
multipacket reception capability. We also provide applications
to commonly used channel models to illustrate how the de-
rived equilibrium strategies can be utilized to provide service
differentiation and to design user utility functions optimally
in multiple access networks. In the second half of the paper,
these results are first used to establish a Poisson-Bernoulli
type approximation for the limiting distribution of the total
number of packet arrivals at Nash equilibrium for large user
populations, and are then extended to imperfect information
random access games. In the imperfect information case, we
observe that a Braess-like paradox occurs and the network
throughput is reduced if more information is publicly available
about user utility functions.

A. Background and Literature Review

Wireless channels are inherently broadcast in nature. There-
fore, the resolution of contention among mobile users for ac-
cess to common wireless communication resources remains as
a fundamental bottleneck in wireless multiple access commu-
nication. In particular, transmissions through wireless channels
must be coordinated to control multiple access interference
(MAI), and thereby to maximize target data rates. Indeed, this
problem has received considerable attention in the literature,
and questions such as what packet arrival rates are required
to stabilize transmitters’ queues and channel throughput are
relatively well-understood when all mobile users obey a
predetermined set of rules for choosing their transmission
probabilities, e.g., see [6]-[10]. Based on these studies as
well as many others, various contention based random access
approaches have been proposed in [11], including the most
prominent ones such as slotted ALOHA, CSMA/CA and IEEE
802.11 DCF, which do not require centralized scheduling. A
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key design degree of freedom in these random access protocols
is channel access probability determination, or contention
resolution, to mitigate MAI. Different protocols differ in
how they implement contention resolution, with prominent
examples being window based and persistence probability
based approaches.

In addition to the classical approach to contention control,
there has been a considerable amount of more recent work
such as [2]-[5] and [12]-[20] providing a new game theoretic
design perspective for contention resolution. These studies are
mainly motivated by ideas revolving around distributed control
and coordination of increasingly more heterogenous and pro-
grammable wireless communication devices to engineer next
generation wireless MAC protocols and technologies. In [2]-
[4] and [12], the main focus is on the dynamics of iterative
strategy update mechanisms such as best-response, gradient,
or Jacobi play, achieving a desired equilibrium operating
point over collision channels. In [12], the authors consider
the classical slotted ALOHA setting in which mobile users
update their transmission probabilities in a distributed manner
to achieve their target throughput levels. This work establishes
local convergence properties for the proposed Jacobi strategy
update mechanism to a Nash equilibrium operating point.

In [2] and [3], the authors extend the framework introduced
in [12] by interpreting contention control as a dynamic iterative
feedback system responding to the current contention measure
and transmission probabilities of mobile users. This extended
model allows for the analysis of maximum network throughput
for heterogenous networks with different traffic classes subject
to fairness constraints. Among many other results, this work
illustrates that the game theoretic approach provides higher
throughput, better fairness and service differentiation,and
a mechanism to decouple contention control from handling
failed packets when compared with the standard IEEE 802.11
DCF. In [4], the authors reverse-engineer the exponential
back-off based MAC protocols, and show that the contention
resolution protocols implicitly solve a noncooperative random
access game. This work provides an explicit expression for
user utilities, and studies convergence dynamics for the derived
noncooperative random access game. Similar connections are
also made for the slotted ALOHA persistence probability in
[5].

In addition to the above set of previous works focusing on
strategy update mechanisms, there is a large body of papers
such as [13]-[18] concentrating more on the fundamental
equilibrium properties of the proposed random access game
models, including the existence and the uniqueness of Nash
equilibria. In [13], the authors propose a simple game theoretic
contention resolution approach for a slotted ALOHA type
MAC layer over collision channels in which a common utility
function parameterized by the cost of transmission arbitrates
transmission probabilities of all mobile users. The existence
of a symmetricNash equilibrium at which the throughput
performance of the proposed game theoretic MAC layer is
almost the same as that of a centrally controlled slotted
ALOHA MAC layer is shown.

The model in [13] has been extended in several directions
in subsequent works [14]-[18]. In [14], the authors analyze

the same model used in [13] over wireless channels with
multipacket reception capabilities, and establish the existence
of the symmetric Nash equilibrium as well as packet arrival
rates stabilizing the queues for some well known channels. In
[15], the same game model over collision channels but with
heterogenousset of mobile users is investigated. Necessary
and sufficient conditions for a strategy profile to be a Nash
equilibrium are obtained. The same authors have also extended
these results to imperfect information games [16] and to simple
multipacket reception models [17]. In [18], the authors gen-
eralize the results in [14] to the multipacket reception model
using channel state information to schedule transmissions. The
existence of a Nash equilibrium operating point is shown,
and a stochastic gradient based strategy update mechanism
converging to this equilibrium is proposed.

Other game models for random access have also been con-
sidered in the literature,e.g.,[19] and [20]. In [19], the authors
use a Markovian model to express the channel throughput as
a function of mobile users’ transmission probabilities over
collision channels. This model is then used to study the
symmetricequilibrium contention resolution strategies in a
game setting in which each mobile user aims to maximize its
own channel throughput selfishly. Through numerical analysis,
it is shown that the overall channel throughput achieved
by selfish mobile users coincides with the throughput that
can be achieved via centralized controller, as in [13], if a
pricing mechanism is employed. In [20], the optimal choice
of transmission probabilities subject to a minimum throughput
demand over collision channels is considered. In the model
employed, channel state information is used to schedule
transmissions, similar to the model in [18]. It is shown that
there are only two Nash equilibria, one is strictly better
than the other one with possibly arbitrarily large performance
gap, when the throughput demands are feasible. A strategy
update mechanism converging to the better Nash equilibrium
operating point is also proposed in this work.

B. Summary of Key Contributions, Comparison with Previous
Work and Paper Organization

1) Summary of Key Contributions:Our contributions in this
paper can be summarized in detail as follows.

• We focus on layer 2 contention resolution strategies,
and establishnew analytically tractable necessary and
sufficient conditions for a contention strategy profile
to be a Nash equilibrium over wireless channels with
multipacket reception capability. Multipacket reception
is an important feature of our model to capture proba-
bilistic receptions in wireless multiple access channels.
We demonstrate tangible applications of these results
in practical communication scenarios, and provide en-
gineering insights to achieve service differentiation and
optimal throughput by designing user utility functions.
Both perfect information and imperfect information game
settings are considered.

• We study the collective equilibrium network behavior for
large user populations, and obtain a Poisson-Bernoulli
type approximation for the limiting distribution of the to-
tal number of packet arrivals at Nash equilibrium, which
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is an important summary statistic to stabilize multiple
access networks.

• For the random access game with imperfect information
structure, we show that a Nash equilibrium strategy
profile, if it exists, must be a threshold strategy profile in
which users transmit only if their cost of packet failures
is smaller than a threshold value. We provide explicit
expressions for setting equilibrium threshold values. We
establish existence and uniqueness results in this case, and
illustrate learning dynamics on the best-response path to
reveal information structure of the game and to learn how
to play a Nash equilibrium. In particular, we show that
symmetric equilibrium, desirable for fairness purposes,
exists but the best-response iteration may never lead to it
even in symmetric communication scenarios when there
are multiple equilibria.

• This paper shows, for the first time, that a Braess-like
paradox occurs if more information is publicly available
about user utility functions. That is, the channel through-
put achieved under imperfect information turns out to
be higher than the one achieved under perfect informa-
tion. This result hints at an important design criterion
for next generation wireless random access protocols:
Always maintain some level of randomness to better tame
selfishness in mobile users for higher target data rates.

2) Comparison with Previous Work:These results improve
the current state-of-the-art in game theory based random
access design and analysis in several important ways. Unlike
the works focusing on iterative strategy update mechanisms
and transient network behavior such as [2]-[4] and [12], we
establish necessary and sufficient conditions to be satisfied by
steady-state equilibrium contention resolution strategies (see
Section III). These equilibrium conditions can be solved either
analytically or numerically to obtain equilibrium transmission
probabilities (see Section IV), and then the network can be
readily stabilized to a desired equilibrium by broadcasting
these probabilities to mobile users. For the imperfect in-
formation game formulation, even though the existence and
uniqueness of the equilibrium can be established, such closed-
form or numerical solutions are not readily available, and
therefore the transient network behavior is also investigated
by studying learning dynamics on the best-response path (see
Section VI).

In comparison to works focusing on random accessonly
over collision channels such as [12], [13], [15], [16], [19]
and [20], the physical layer model considered in this paper
is more general, including the collision channel model as a
special case. In addition, we consider both symmetric and
asymmetric equilibrium strategies,e.g.,see the first example in
Section IV, rather than focusing only on symmetric contention
resolution strategies as in [13] and [19]. Analysis of asymmet-
ric equilibria is especially important for understanding how to
provision differentiated services to different classes ofusers
in increasingly heterogenous wireless networks. Similar to our
problem formulation, multipacket reception capability inthe
random access setting is also considered in [14] and [18]. As
compared to the existence results, which provide limited infor-

mation about the structure of equilibrium strategies, appearing
in these works, we obtain detailed necessary and sufficient
equilibrium conditions, and solve them, either analytically or
numerically, to derive the shape of equilibrium contentionres-
olution strategies. In addition, neither the asymptotic collective
network behavior as in Section V nor the game formulations
with imperfect information as in Section VI are considered in
[14] and [18].

3) Paper Organization:The rest of the paper is organized
as follows. Section II describes the system model under
consideration. Equilibrium transmission strategies for general
wireless channels with multipacket reception capability are
analyzed in Section III, and then applications of these results
along with various engineering insights are illustrated inSec-
tion IV. Section V studies the collective equilibrium network
behavior for a large user population. Section VI investigates
possible extensions of the basic model to imperfect informa-
tion random access games. Finally, Section VII concludes the
paper.

II. SYSTEM MODEL

We consider a wireless multiple access communication net-
work in whichN mobile users, indexed byI = {1, . . . , N},
are selfishly contending for channel access to communicate
with a common base station (BS). The time is slotted, and
packet transmissions are synchronized at the beginning of each
time slot. The physical layer of the system is modeled by a
stochastic channelreception matrixR = (rn,k) 1≤n≤N,

0≤k≤N

, where

rn,k represents the probability thatk packets are received
correctly givenn of them are transmitted. By convention,
rn,k is set to zero ifk > n. Note that

∑N
k=0 rn,k = 1 for

all n ∈ {1, . . . , N}. If r1,0 > 0, we say that the channel is
imperfect(or, noisy) due to various random factors such as
fading, path-loss and background noise.

We assume that all users involved in a collision of sizen

have identical packet success probabilities, which are given
by γn = 1

n

∑n
k=1 krn,k. In such a multiple access setting, the

success probability of a packet is expected to decrease with
increasing MAI. In this paper, we model this downward trend
by assumingγn+1 ≤ γn. In order to avoid trivialities, we also
assume thatγn+1 is strictly smaller thanγn for at least onen
in {1, . . . , N − 1}. Otherwise, packet failures do not depend
on the interference caused by other users, and the resulting
communication scenario is easy to analyze. The set of such
stochastic channel matrices will be represented byR.

If mobile useri transmits a packet successfully, it receives
a utility of ui,S units. If the transmission fails, it receives
a utility of ui,F units. If it waits, it receives a utility of
ui,W units. We assume thatui,S > ui,W > ui,F , and use
the vector notationui = (ui,S , ui,W , ui,F ). These utilities
are needed for setting up a selfish random access utility
maximization problem for the multiple access communication
scenario under consideration, as well as for allowing us to
model different battery levels, delay and quality-of-service
requirements of different users. Therandom access gameG
is defined to be the tripleG =

〈

I, {Si}i∈I , {ui}i∈I

〉

, where
Si = [αi, βi] ⊆ [0, 1] is the set from which useri chooses a
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transmission probability (i.e., a contention resolution strategy)
to access the wireless channel. Here,αi and βi are positive
real numbers satisfying0 ≤ αi ≤ βi ≤ 1, ∀i ∈ I. We
will interpret contention resolution strategies as persistence
probabilities in an adaptivep-persistent slotted ALOHA pro-
tocol in which persistence probabilities are adaptively updated
according to the derived equilibrium strategies. Persistence
probability based contention resolution can also approximate
a contention window based protocol [4].

If the strategy setsSi and utility vectorsui of all users are
identical, we sayG is a symmetricrandom access game. In
this case, the common strategy set from which all users choose
their transmission probabilities is given by[α, β], whereα and
β are positive real numbers satisfying0 ≤ α ≤ β ≤ 1. We
sayG is in thestandard formif utility vectors are in the form
of ui = (1, 0,−ci), whereci > 0 is interpreted as the cost of
packet failure for useri.

The average utility that a user receives is a function of its
transmission probability and the transmission probabilities of
other users. LetS =

∏

i∈I Si be the product set of user
strategies,p be a vector of transmission probabilities inS,
andUi (p) be the expected utility that theith user receives as
a function ofp. The selfish optimization problem to be solved
by useri is to findp⋆i such thatUi

(

p⋆i ,p−i

)

≥ Ui

(

pi,p−i

)

for
all pi ∈ Si, wherep−i represents the vector of transmission
probabilities of the other users. We say thatp⋆ = (p⋆i )i∈I is
a Nash equilibriumif and only if Ui

(

p⋆i ,p
⋆
−i

)

≥ Ui

(

pi,p
⋆
−i

)

for all i ∈ I and pi ∈ Si. Let NG (R) denote the set of
Nash equilibria ofG when the channel reception matrix isR.
We say that two random access gamesGj , j ∈ {1, 2}, are
equivalentif NG1 (R) = NG2 (R) for all R ∈ R.

III. E QUILIBRIUM STRATEGIES FORGENERAL WIRELESS

CHANNELS

In this section, we analyze equilibrium contention resolution
strategies for general wireless channels and obtain necessary
and sufficient conditions to be satisfied by a Nash equilibrium
transmission probability vector. In the next section, we will
illustrate the applications of our results in more specific com-
munication scenarios by solving these equilibrium conditions.

The first critical issue to resolve is the existence of a Nash
equilibrium. To this end, a positive existence result directly
follows from the Glicksberg fixed point theorem [21]. (See
also Theorem 1.2 in [22].) However, such existence results
provide limited information about the structure of the Nash
equilibria, and about selfish transmission probabilities at these
equilibria. Therefore, we establish necessary and sufficient
conditions to be satisfied by a Nash equilibrium transmission
probability vector in the following theorem. We will then
solve these conditions to obtain explicit representationsof
equilibrium contention resolution strategies in some special
cases.

Theorem 1:For a given channel reception matrixR and a
strategy profilep, let

Γi

(

R,p−i

)

=

N
∑

n=1

∑

In⊆I:
i∈In,|In|=n

γn
∏

j∈In−{i}

pj
∏

j∈I−In

(1− pj) .

Then,p⋆ is a Nash equilibrium if and only if the following
equilibrium conditions hold for alli ∈ I:

(i) If Γi

(

R,p⋆
−i

)

>
ui,W−ui,F

ui,S−ui,F
, thenp⋆i = βi.

(ii) If Γi

(

R,p⋆
−i

)

=
ui,W−ui,F

ui,S−ui,F
, thenαi ≤ p⋆i ≤ βi.

(iii) If Γi

(

R,p⋆
−i

)

<
ui,W−ui,F

ui,S−ui,F
, thenp⋆i = αi.

Proof: See Appendix A.
Intuitively, the terms appearing on the left-hand sides of

these equilibrium conditions can be considered to be the
contention signal that each mobile user receives from other
users in the network. A higher contention signal received
by useri means less MAI is generated by other users, and
therefore the higher the channel access and the resulting packet
success probabilities of useri are.

In Section IV, we show that these equilibrium conditions
can be solved to derive the form of equilibrium transmission
probabilities for specific channel models. Once these proba-
bilities are derived, two engineering approaches are possible.
In the first one, a Stackelberg formulation can be considered
in which the BS moves first, and dictates the transmission
probabilities corresponding to a desired equilibrium point. In
the second approach, we can design a distributed strategy
update mechanism, possibly based on a Lyapunov function as
in [4] and [12], to lead the network to a desired equilibrium.
We will illustrate one such possible strategy update mechanism
in Section VI. Another important consequence of this theorem
is a representation of random access games in terms of
equivalence classes.

Proposition 1: Any random access gameG =
〈

I, {Si}i∈I , {ui}i∈I

〉

is equivalent to the standard form
random access gameG′ =

〈

I, {Si}i∈I , {u
′
i}i∈I

〉

with
ci =

ui,W−ui,F

ui,S−ui,W
.

Proof: The proof follows directly from Theorem 1 by
observing that ci

1+ci
=

ui,W−ui,F

ui,S−ui,F
.

Therefore, without loss of any generality, we will focus only
on random access games in the standard form in the rest of
the paper. Technically speaking, standard form random access
games will be used to represent equivalence classes of random
access games, and analyzing the Nash equilibria of a standard
form game will amount to analyzing the Nash equilibria of
random access games in the same equivalence class. In the next
theorem, we establish a symmetry property for equilibrium
contention resolution strategies in symmetric random access
games.

Theorem 2:Let G be a symmetric random access game in
standard form with the common strategy set[α, β] ⊆ [0, 1]
and the common cost of packet failurec > 0 for all users. If
p⋆ is a Nash equilibrium, thenp⋆i = p⋆j for all p⋆i and p⋆j in
(α, β). In particular, ifp⋆i ∈ (α, β) for all i ∈ I, then all users
access the channel with the same transmission probabilityp⋆

solving

J (p⋆) =
c

1 + c
, (1)

whereJ(p) =
∑N−1

n=0 γn+1

(

N−1
n

)

pn (1− p)
N−1−n.

Proof: See Appendix B.
We note that (1) is also sufficient forp⋆ to be the common

equilibrium transmission probability for all users, as implied



5

dJ(p)

dp
= −

N−1
∑

n=1

(γn − γn+1)
(N − 1)!

(n− 1)! (N − 1− n)!
pn−1 (1− p)

N−1−n
< 0. (2)

by Theorem 1. Moreover, the solution to (1), if it exists, is
unique. This can be readily seen by taking the derivative of
J(p) with respect top as in (2) Finally, a necessary and
sufficient condition for the existence of the solution to (1)
is to haveJ(α) ≥ c

1+c
≥ J(β).

IV. A PPLICATIONS AND DISCUSSION

We will now demonstrate tangible applications of the above
general equilibrium results in more specific communication
scenarios. We start our discussion with equilibrium contention
resolution strategies for imperfect collision channels.

A. Selfish Random Access over Imperfect Collision Channels

One of the most commonly studied channel models for mul-
tiple access communication is the classical collision channel
model, perhaps mainly due to its analytical tractability for ob-
taining practical control mechanisms achieving the maximum
stable throughput of such systems,e.g.,see [7], [8] and [11] for
more details. We now look briefly at equilibrium contention
resolution strategies for imperfect wireless collision channels.
The derived Nash equilibrium strategies can, in turn, be used
in a drift analysis to determine the stability of the resulting
Markovian communication system with selfish mobile users.
However, we will not pursue this direction in the current paper.

1) Channel Model:In the collision channel model, a packet
transmission is assumed to be successful only if there is
no other user attempting to transmit simultaneously. Hence,
rn,k = δ0,k if n ≥ 2, where δi,j = 1 if i = j, and zero
otherwise. We letr1,0 = θ and r1,1 = 1 − θ for some
θ ∈ [0, 1]. Here, the parameterθ can be interpreted as a
measure of the noise level summarizing all random factors
such as background noise, fading and path-loss affecting
packet receptions. The smaller theθ is, the less noise is present
in the system, and a packet transmission is more likely to be
successful if there is no other transmission attempt. On the
other hand, ifθ is large, it is more likely that a packet fails
even if there is no other user transmitting simultaneously.

2) Equilibrium Contention Resolution Strategies:By set-
ting the strategy sets to[0, 1], we can simplify the equi-
librium conditions in Theorem 1 as follows:p⋆ is a Nash
equilibrium if and only if, for all i ∈ I, it satisfies (i)
p⋆i = 1 if (1 − θ)

∏

j 6=i

(

1− p⋆j
)

> ci
1+ci

, (ii) p⋆i ∈ [0, 1]

if (1 − θ)
∏

j 6=i

(

1− p⋆j
)

= ci
1+ci

, and (iii) p⋆i = 0 if
(1− θ)

∏

j 6=i

(

1− p⋆j
)

< ci
1+ci

.
We can further simplify these conditions by dividing users

into three disjoint groups given byI1 =
{

i ∈ I : ci >
1−θ
θ

}

,
I2 =

{

i ∈ I : ci =
1−θ
θ

}

and I3 =
{

i ∈ I : ci <
1−θ
θ

}

.
Users in I1 have costs so large that they never transmit
even if no other user is contending for channel access. If
I1 = I, the only Nash equilibrium is the one at which
none of the users transmits, which never arises as a Nash

equilibrium when the channel is noise-free,i.e., θ = 0. A user
in I2 transmits with positive probability only if all other users
set their transmission probabilities to zero. More precisely, a
transmission probability vectorp⋆ at which there exists a user
i ∈ I2 transmitting with a probabilityp⋆i ∈

[

1− 1
1−θ

η
1+η

, 1
]

,
and p⋆j = 0 for all other j 6= i is a Nash equilibrium ofG,
whereη = minj∈I3 cj . The lower bound1− 1

1−θ
η

1+η
on p⋆i is

chosen such that all users inI3 are deterred from transmission,
and it is easy to show that this lower bound is always positive.

There are interesting Nash equilibria at which a subsetI3,0

of users inI3 transmit with positive probability, while others
exercise zero transmission probability as their contention res-
olution strategies. Letp⋆ be such a Nash equilibrium. Then,
contention resolution strategies of users inI3,0 must satisfy
the second equilibrium condition, which leads to closed form

expressionsp⋆i = 1− 1+ci
ci

(

1
1−θ

ϕ
(

I3,0
)

)
1

|I3,0|−1
, ∀i ∈ I3,0,

where the set functionϕ : 2I
3

− {∅} 7→ R+ is defined as
ϕ
(

I3,0
)

=
∏

i∈I3,0
ci

1+ci
for all non-empty subsetsI3,0 of

I3. (Here,2I
3

denote the set of all subsets ofI3.) Note that

such a solution is feasible only if
(

1
1−θ

ϕ
(

I3,0
)

)
1

|I3,0|−1
≤

ci
1+ci

< 1, which further impliesϕ
(

I3,0
)

< 1− θ. Therefore,
when

∣

∣I3,0
∣

∣ = 1, we setp⋆i to 1 for i ∈ I3,0 without causing
any ambiguity. These transmission probabilities also showhow
different services are provisioned to different users belonging
to different traffic classes at the equilibrium. For example,
by interpretingci andp⋆i as the common delay price (arising
from packet collisions) and the channel access probabilityfor
class-i users, respectively, we expect users carrying more time-
sensitive services such as real-time video streaming to have
larger delay prices, and access the channel more frequently.
Indeed,1−p⋆

i

1−p⋆
j
=

(1+ci)cj
(1+cj)ci

< 1 for ci > cj .

3) Numerical Results and Discussion:In Fig. 1, we illus-
trate equilibrium strategies on different partitions ofR

2
+ for the

two-user communication scenario. ForN > 2, we can con-
ceptually visualize a similar partition ofRN

+ into 2N box-like
regions. In particular, if allci’s are small,i.e., 0 < ci <

1−θ
θ

for all i ∈ I, then the users access the channel with positive
probability. On the other hand, as theci’s increase above the
critical level 1−θ

θ
, users start to switch off by setting their

transmission probabilities to zero. If the channel qualityor the
costs of failed packets are changing over time, this behavior is
reminiscent of anopportunistic random accesspolicy in which
selfish users access the channel opportunistically when the
channel quality is above a threshold determined by the costsof
packet failures,i.e., when1− θ > ci

1+ci
for useri. In another

interpretation, we can say that when the channel is in a deep
fade, the users with high costs cannot be provisioned for the
required level of quality-of-service regardless of the amount of
contention from other users, and therefore traffic from them
is completely blocked and all communication resources are
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1−θ
θ

c1

c2

In this region,3 Nash
equilibria can emerge:
(1, 0), (0, 1) andp⋆

with 0 < p⋆
1 , p

⋆
2 < 1.

In this region,
the only Nash

equilibrium is(1, 0).

In this region,
the only Nash

equilibrium is(0, 0).

In this region,
the only Nash

equilibrium is(0, 1).

1−θ
θ

Fig. 1. Possible equilibrium contention resolution strategies on different
partitions ofR2

+ for the imperfect collision channel with two users.p⋆i =

1− 1

1−θ

c−i

1+c−i
, wherei,−i ∈ {1, 2} and i 6= −i.

distributed among other users with low costs until the channel
recovers from the deep fade.

In Fig. 2, we plot the equilibrium transmission probabilities
for the homogenous case versusc by settingN to 5. We
focus only on the equilibrium at which all users transmit with
the same positive probability, which corresponds to the fair
allocation of communication resources. The equilibrium trans-

mission probability is, then, given byp⋆ = 1− N−1

√

1
1−θ

c
1+c

.
As expected, when the noise levelθ increases, transmission
probabilities and the system throughput measured in packets
per time slot decrease. In all cases, small values ofc lead
to high transmission probabilities, which in turn results in
excessive packet collisions and low throughput. Similarly,
large values ofc result in channel under-utilization, and
therefore low throughput. In the middle-ground, there exists
an optimal level ofc maximizing the system throughput. It
is easy to see that this maximum throughput is also the best
that we can achieve via a central controller since transmission
probabilities are continuous functions of costs. Therefore, no
loss is incurred by selfish operation if selfish transmission
probabilities can be manipulated to drive the system to the
optimal operating point.

For example, Fig. 2 suggests that whenc is small, a central
controller can use the parameterθ as a signaling device to ma-
nipulate transmission probabilities, and drive the systemto the
optimal operating point, either by declaring a fictitious noise
level to be greater than the true noise level, or by introducing
artificial noise during the channel estimation phase. This
approach will decrease users’ greediness, eliminate excessive
collisions and increase the system throughput. This operation
can also be considered as a design process for user utility
functions based on changing the effective value ofc to achieve
optimal performance. Figure 3 illustrates that the throughput
increases significantly, and the same maximum throughput can
be achieved by declaring fictitious noise levels0.8, 0.5 and0.2
when c is around0.1, 0.27 and0.5, respectively, for a noise-
free channel.
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Fig. 2. Equilibrium contention resolution strategies (topfigure) and the
corresponding system throughput (bottom figure). Imperfect collision channels
with N = 5. The unit of throughput is normalized to packets per time slot.
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Fig. 3. System throughput when selfish users are manipulatedby declaring
fictitious noise levels. Perfect collision channel withN = 5. The unit of
throughput is normalized to packets per time slot.

B. Selfish Random Access forT -out-of-N Channels

1) Channel Model:The second application of our results
will be to a special type of multipacket reception channel
in which all packets can be reconstructed successfully with
probability 1 − θn if the collision sizen is smaller than or
equal toT ∈ {1, 2, · · · , N}. On the other hand, ifn > T , all
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Fig. 4. Equilibrium contention resolution strategies (topfigures) and the corresponding system throughput (bottom figures) forT -out-of-N channels. Figures
on the left are provided for noise-free channels, whereas figures on the right are for the common noise parameterθ = 0.25. In all cases,N = 10. The unit
of throughput is normalized to packets per time slot.

packets are destroyed together. If the noise parameterθn is 0
for all n, then this is the channel model studied in [23] and
[24]. Such channels can be implemented by usingT -out-of-N
codes [25].

2) Equilibrium Contention Resolution Strategies:We will
focus only on the homogenous case and the Nash equilib-
rium at which all users access the channel with positive
probability for illustrative purposes, but a similar analysis
can be conducted for the heterogenous case and other equi-
libria as in the collision channel model above. We set the
strategy sets to[0, 1]. In this case,J(p) in (1) is given
by J(p) =

∑T−1
n=0 (1− θn+1)

(

N−1
n

)

pn (1− p)
N−1−n. The

common equilibrium transmission probabilityp⋆ is obtained
by solving J (p⋆) = c

1+c
. If T < N , thenJ(1) = 0, and it

is enough to haveJ(0) = 1 − θ1 ≥ c
1+c

for the existence of
p⋆ solving J (p⋆) = c

1+c
. Otherwise,J(1) = 1− θN , and we

require1−θ1 ≥
c

1+c
≥ 1−θN . Note also that if1−θN > c

1+c

(for T = N ), then users transmit with probability one, and if
1− θ1 < c

1+c
(for T ≤ N ), they never transmit.

3) Numerical Results and Discussion:In Fig. 4, we plot the
equilibrium strategies and the corresponding system through-
put for noise-free channels and for the channels with the
common noise parameterθ = 0.25 when N = 10. Again,
the unit of throughput is normalized to packets per time
slot. Similar conclusions continue to hold for other values

of N and θn varying with n. As expected, equilibrium
transmission probabilities and the corresponding throughput
increase withT . More importantly, the maximum achievable
throughput increases more than linearly withT . We find this
maximum throughput to be around0.39, 0.9, 1.51 and6.97 for
T = 1, 2, 3 and9, respectively. ForT large whenθ = 0.25, we
also observe a severe cut-off in transmission probabilities and
a corresponding sharp decrease in the equilibrium throughput
when the cost of packet failure comes close to the critical
level 1−θ

θ
. On the other hand, throughput does not exhibit

such an abrupt decrease with increasing cost for the noise-
free channel. This indicates the importance of the calibration
of costs and noise levels in order to avoid high penalty in
equilibrium throughput for noisyT -out-of-N channels with
large multipacket reception capability.

C. Selfish Mobile Users with Pairwise Transmissions

1) Channel Model:As a final example, we consider pair-
wise transmissions in which the positions ofN transmitter-
receiver pairs{TXi,RXi}

N
i=1 are independently and identi-

cally distributed over a network domain. Transmission from
TXi is successful if there is no other transmitter closer to
RXi thanTXi, and the channel noise is small enough, which
will be assumed to happen with probability1 − θ. Here, the
interpretation ofθ is the same as above. This is the first
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Fig. 5. Equilibrium contention resolution strategies (left figure) and the corresponding system throughput (right figure) for mobile users with pairwise
transmissions. In all cases,N = 5. The unit of throughput is normalized to packets per time slot.

example studied in [9], and shows the generality of our results
beyond the simple multiple access channel with one common
receiver and multiple transmitters. More applications of our
results in Section III are possible,e.g.,wireless channels with
capture and frequency hopping spread spectrum systems, but
we do not pursue this direction due to space limitation.

2) Equilibrium Contention Resolution Strategies:For il-
lustrative purposes, we again focus on the homogenous case
and the symmetric equilibrium at which all users access
the channel with positive probability. We set the strategy
sets to [0, 1]. For this set-up, we haveγn = 1−θ

n
, and

J(p) =
∑N−1

n=0
1−θ
n+1

(

N−1
n

)

pn(1 − p)N−1−n. The equilibrium
transmission probability is obtained by solvingJ (p⋆) = c

1+c
.

p⋆ exists ifJ(0) = 1−θ ≥ c
1+c

≥ J(1) = 1−θ
N

. If 1−θ < c
1+c

,
users never transmit, and if1−θ

N
> c

1+c
, they transmit with

probability one.

3) Numerical Results and Discussion:In Fig. 5, we show
equilibrium transmission probabilities and the corresponding
throughputs in packets per time slot for different values of
θ when there areN = 5 transmitter-receiver pairs in the
network. Similar conclusions continue to hold for other values
of N . To avoid repetition, we will mention only the main
differences between this scenario and the two previous ones.
In the current case, there is an interval ofc around zero in
which transmission probabilities become one. The length of
this interval is determined byθ andN , and is given by 1−θ

N−1+θ
.

On the other hand, transmission with probability one can arise
only in the limit whenc goes to zero in Figs. 2 and 4.

The behavior of the equilibrium throughput in this case
looks quite different from the ones in previous examples.
This behavior arises because the average number of successful
receptions with pairwise transmissions is always equal to1−θ

for any n since γn = 1−θ
n

. Therefore, when transmission
probabilities are low, the network becomes underutilized and
the overall network throughput decreases. On the other hand,
when transmission probabilities are high, there always are
active transmitter-receiver pairs for which the network can
support a throughput of1− θ.

V. A SYMPTOTIC NETWORK BEHAVIOR

For the maximum stable throughput analysis in multiple ac-
cess networks, it is commonly assumed that there is an infinite
population of users and the number of packet arrivals from
them follows a Poisson law,e.g.,see [7], [8] and [11]. In the
absence of any knowledge of micro-level rules governing user
behavior, such a Poisson assumption for predicting collective
behavior of an infinite population of users is very natural to
make by the law of rare events [26], [27].

However, having established micro-level contention resolu-
tion strategies, we can now verify whether or not the Poisson
distribution is still valid to approximate the total numberof
packet arrivals from an infinite population of selfish users.In
fact, it is shown in [15] that such an approximation holds
for identical users. In this section, we will establish a similar
Poisson-Bernoulli approximation result for heterogenoususers
in which the cost of packet failure of useri is ci > 0.
In establishing our approximation result, we focus only on
noise-free collision channels and the equilibrium at whichall
users transmit with positive probability. We assume that cost
parameters of initial users do not change as we add more users
to the system. Extensions to imperfect collision channels and
other equilibria with an infinite population of users are trivial.
Extension to general channel models is a more challenging
future research direction.

The main result of this section is given in Theorem 3. For
any given two discrete random variablesX and Y taking
values in a countable setZ, dTV (X,Y ) represents thetotal
variation distancebetween their distributionsFX and FY ,
defined asdTV (X,Y ) =

∑

z∈Z |FX(z)− FY (z)|. Theorem
3 indicates that, even though a pure Poisson approximation
may not work well, a mixture of a Poisson distribution
with finitely many Bernoulli distributions serves as a good
approximation for the total number of packet arrivals from an
infinite population of heterogenous users.

Theorem 3:Let p⋆
N be a Nash equilibrium at which all

users transmit with positive probability. Ifp⋆
N exists for allN

large enough, then the total number of packet arrivalsYN at
p⋆
N converges in distribution to a real valued random variable



9

Γ̃i (R, s−i) =

N
∑

n=1

∑

In⊆I:
i∈In,|In|=n

γn
∏

j∈In−{i}

∫ ∞

0

sj (cj) dFi,j (cj)
∏

j∈I−In

(

1−

∫ ∞

0

sj (cj) dFi,j (cj)

)

. (3)

Y if and only if limN→∞

∑N
i=1 p

⋆
i,N ∈ (0,∞). Moreover,

for any ǫ > 0, there exist a Poisson random variablePo (λ)
with meanλ and an independent finite collection of Bernoulli
random variables{Bern(qk)}

K
k=1 with means{qk}

K
k=1 such

that dTV

(

Y,Po(λ) +
∑K

k=1 Bern (qk)
)

≤ ǫ.
Proof: See Appendix C.

Intuitively, this result can be interpreted as follows. There
is a homogenous part of the population consisting of users
with similar costs. Packet arrivals from these users behave
like a Poisson random process collectively. On the other
hand, the rest of the users are more heterogeneous, and the
number of packet arrivals from them can be approximated as
a summation of Bernoulli random variables. In fact, in our
proof in Appendix C, we showed that the existence of a Nash
equilibrium with an infinite population of users necessitates
costs of packet failures to have only one accumulation point.
The Poisson and Bernoulli parameters can be fine tuned to
increase the approximation accuracy. Moreover, by applying
the Stein-Chen approximation [27] to the Bernoulli part, we
can further reduce the Poisson-Bernoulli approximation toa
pure Poisson approximation, albeit with greater approximation
error.

VI. RANDOM ACCESS WITHIMPERFECTCOST

INFORMATION

Our analysis in previous sections depended implicitly on
the perfect information assumption in which all users know
the costs of all other users perfectly. In this section, we will
show how we can relax this perfect information assumption.

A. Imperfect Information Game Formulation and Equilibrium
Strategies

We focus on the random access game in the standard form
without loss of generality, and assume thatci is randomly
distributed according to a cost distributionFi but is perfectly
known by useri before the start of a transmission. On the
other hand, useri does not know the cost values of other users
exactly but only has a set of belief distributions{Fi,j}j∈I−{i}
to predict them. This formulation is general enough to admit
having belief distributions different than true cost distributions.
In this Bayesian game setting, the strategy of useri is a
functionsi that mapsci ∈ (0,∞) to a transmission probability
pi ∈ [αi, βi]. With a slight abuse of notation, we will still
represent the strategy set of useri by Si. As is standard,
a strategy profiles⋆ is said to be a Nash equilibrium if
s⋆i is a solution of the selfish utility maximization problem
maxsi∈Si

Ui

(

si, s
⋆
−i

)

for all i ∈ I. In contrast to our analysis
in Section III, this optimization problem is now over infinite
dimensional function spaces. However, as established in the
next theorem, equilibrium strategy profiles can be identified
by using a threshold vectorτ ⋆ in R

N
+ .

Theorem 4:Let Γ̃i (R, s−i) be as in (3). A strategy profile
s⋆ is a Nash equilibrium if and only ifs⋆i is a threshold strategy
in the forms⋆i (ci) = βi1{ci<τ⋆

i }
+ pi1{ci=τ⋆

i }
+ αi1{ci>τ⋆

i }
almost surely (with respect toFi) for all i, where τ⋆i =
Γ̃i(R,s⋆

−i)
1−Γ̃i(R,s⋆

−i)
andpi ∈ [αi, βi].

Proof: See Appendix D.

B. Existence and Uniqueness of the Nash Equilibria

There are several important theoretical and practical impli-
cations of Theorem 4. First of all, it allows us to restrict the
search for equilibrium strategies to only threshold strategies.
Therefore, by viewing the random access game as a game in
which users choose a threshold, we can write the best-response
function B : R

N
+ 7→ R

N
+ , with a slight abuse of notation,

asB (τ ) =
(

Γ̃1(R,τ−1)

1−Γ̃1(R,τ−1)
,

Γ̃2(R,τ−2)

1−Γ̃2(R,τ−2)
, · · · , Γ̃N (R,τ−N )

1−Γ̃N (R,τ−N )

)

.

By restricting thresholds to take values only from[0,∆] for
some large but finite positive constant∆ and assuming all be-
lief distributions are continuous, we can use the Brouwer fixed
point theorem to conclude thatB has at least one fixed point,
which is the Nash equilibrium of the random access game.
Note that searching for equilibrium thresholds in a closed
interval is simply a technical requirement to apply the Brouwer
fixed point theorem but is not a severe practical limitation.It
is always correct that̃Γi

(

R, τ ⋆
−i

)

≤ Γ̃i (R,0) = r1,1, and
therefore as long as the channel is imperfect withr1,1 < 1
due to various random effects such as fading, path-loss and
background noise, the best-response threshold of a user never
becomes larger thanr1,11−r1,1

. The same argument also shows the
existence of a symmetric Nash equilibrium for the symmetric
game in which all users have the same belief distribution to
predict the costs of others. Moreover, by appealing to [28],
we can also ensure the uniqueness of the Nash equilibrium
if the Jacobian ofB does not have an eigenvalue equal to
1 for all τ ∈ [0,∆]

N . However, this condition must be
checked case-by-case for each channel model, which can be
a computationally extensive task.

C. Best-response Learning and Discussion

On the practical side, Theorem 4 implies that useri can
learn to play its best-response against its opponents’ strategies
by estimating the congestion signalΓ̃i (R, τ−i) even if it fails
to predict their strategies perfectly at the beginning of the
game. Intuitively,̃Γi (R, τ−i) can be thought of as a summary
statistic summarizing the strategies of other users, and its
knowledge is sufficient for useri to play its best-response.
Γ̃i (R, τ−i) can be estimated by counting the number of
successful transmissions, or the number of idle slots for
collision channels as in [3], which leads to decoupling of
contention resolution from handling failed transmissions. Such
a learning process on the best-response path, if it converges,
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Fig. 6. For the imperfect collision channel withr1,1 = 0.75, the left figures illustrate best-response functions of users 1 and 2, while the right figures
illustrate the learning process leading to Nash equilibria. Belief distributions are exponential with parametersλ = 1 (top figures) andλ = 0.5 (bottom figures).

leads the network to an equilibrium operating point [29], which
is what we illustrate next.

In Fig. 6, a numerical application is illustrated for the
imperfect collision channel in which two users having the
same exponential belief distribution with parameterλ > 0,
i.e., F1,2(c) = F2,1(c) = F (c) = 1 − e−λc, contend for the
channel access. We setr1,1 to 0.75.

Even for this simple symmetric two-user case, the resulting
network behavior can be quite complicated. To start with,
depending on the value ofλ, the equilibrium does not need to
be unique or symmetric. For example, in the top left figure
in Fig. 6, we show the communication scenario in which
λ = 1 and the best-response functions of users intersect at
three different points, two of which correspond to asymmetric
equilibria at which one user sets its threshold to0.1, while the
other one sets it to2.1. Moreover, the symmetric equilibrium
is unstable,i.e., small perturbations to this equilibrium will
lead the system to converge to an asymmetric equilibrium
when there are multiple equilibria. That is, starting from
any initial condition except for the symmetric equilibrium,
the learning process on the best-response path converges to
only one of these asymmetric equilibria. For example, in
the top right figure in Fig. 6, we show two learning curves
with different initial conditions leading to these asymmetric
equilibria. At iterationt + 1, user1 moves first and updates
its threshold toτ1(t + 1) = Γ̃1(R,τ2(t))

1−Γ̃1(R,τ2(t))
by estimating

Γ̃1 (R, τ2(t)). Then, user2 moves and updates its threshold to
τ2(t + 1) = Γ̃2(R,τ1(t+1))

1−Γ̃2(R,τ1(t+1))
by estimatingΓ̃2 (R, τ1(t+ 1)).

Iteration t + 1 terminates after user2 updates its threshold.
As a result, the time-scale of each iteration corresponds to
several tens of time-slots in a physical system allowing users
to accurately estimate the congestion signals. Based on these
observations, we conclude that the symmetric equilibrium,
desirable for fairness purposes, exists but may never appear
even in symmetric communication scenarios when there are
multiple equilibria.

On the other hand, when there is a unique equilibrium,
which is automatically symmetric due to the symmetry in
the problem, it is also the stable equilibrium in this case.
In the bottom left figure in Fig. 6, we show the scenario in
which λ = 0.5 and the best-response functions intersect at
the unique equilibriumτ ⋆ = (0.91, 0.91). In the bottom right
figure in Fig. 6, we show learning curves with different initial
conditions, and leading to the unique symmetric equilibrium.
We note that convergence to the equilibrium in both cases of
multiple equilibria and unique equilibrium is fast, and only
takes around30 iterations.

Further insight into this behavior can be gained by looking
at the two-step-forward best-response functionG. LetBi (τ−i)
be the best-response of useri against its opponent’s strategy
τ−i. Then,Bi (τ−i) =

r1,1

eλτ−i−r1,1
, andG (τ1) = B1 (B2 (τ1))



11

0.65

0.65

0
.6
5

0
.6
5

0
.1

0.1

0
.1

2.1

2
.1

0.1

2
.1

2.1

3

G
(τ

1
)

1.5

1
.5

τ1

2
.5
9

3

G (τ1) Curve

y = τ1 Line

G
(τ

1
)

τ1

G
(τ

1
)

τ1

τ1

G
(τ

1
)

Behavior Near
Symmetric Equilibria

Behavior Near
Asymmetric Equilibria

Behavior Near
Asymmetric Equilibria

Fig. 7. Best-response learning dynamics around symmetric and asymmetric Nash equilibria for the imperfect collision channel.N = 2, r1,1 = 0.75 and
λ = 1.

is equal to

G (τ1) =
r1,1

exp
(

λr1,1
eλτ1−r1,1

)

− r1,1

.

Intuitively, G (τ1) is the threshold value that user1 sets
after user2 chooses its best-response againstτ1. Therefore, if
G (τ1(t)) > τ1(t), then user1 increases its threshold in the
next iteration, whereas it decreases it ifG (τ1(t)) < τ1(t).
If G (τ1(t)) = τ1(t), then the system is in equilibrium. In
Fig. 7, for λ = 1, we show the behavior ofG in [0, 3]
by further zooming in on its behavior around probable user
1 equilibrium threshold values in the inset figures. Ifτ1 is
anywhere in between0.1 and 0.65, even if arbitrarily close
to 0.65, user1 keeps it decreasing in the next iteration until
the system achieves the equilibrium(0.1, 2.1). Similarly, it
keeps it increasing until the system achieves the equilibrium
(2.1, 0.1) if τ1 ∈ (0.65, 2.1). Similar explanations hold ifτ1
is below0.1 or above2.1. Hence, the symmetric equilibrium
is unstable, and only the asymmetric equilibria appear as a
result of the best-response learning process. On the other hand,
when the equilibrium is unique, similar arguments show that
it is stable and all initial threshold pairs are in the domainof
attraction of this equilibrium for this case.

Finally, we compare equilibrium contention resolution
strategies and the corresponding throughput performance over

a noisy collision channel with noise parameterθ for perfect
and imperfect information random access games in Fig. 8. We
setN to 2 for simplicity. Recall thatr1,0 = θ andr1,1 = 1−θ.
In the imperfect information case, both users have the same
exponential belief distribution with parameterλ > 0, i.e.,
F1,2(c) = F2,1(c) = F (c) = 1− e−λc. Furthermore, transmis-
sion costs are also randomly generated according toF (c). As
explained above, users in the imperfect information random
access game set their best-response thresholds to maximize
their expected utilities by exploiting the statistical information
given by their belief distributions about their opponents,and
then decide to transmit or not after observing their realized cost
values. For fairness of comparison, transmission probabilities
and the corresponding equilibrium throughput are plotted
against the mean cost value1

λ
in the imperfect information

random access game, and only the symmetric equilibrium is
considered.

Surprisingly, the equilibrium throughput performance
achieved under imperfect cost information is larger than that
achieved under perfect cost information. In particular, when
compared to the perfect information case, users under im-
perfect cost information contend for the channel access less
aggressively as the mean cost value approaches zero, and
conversely become more aggressive as the mean cost value
grows to infinity. To put it in other words, providing selfish
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Fig. 8. Comparison of equilibrium contention resolution strategies (left figure) and the corresponding system throughput (right figure) for perfect and imperfect
information random access game formulations. Transmission costs are generated according to the exponential distribution F (c) = 1− e−λc in the imperfect
information random access game, where1

λ
is interpreted as the cost of packet failure for this case in the figures. In all cases,N = 2. The unit of throughput

is normalized to packets per time slot.

mobile users with more information about their opponents
makes them unnecessarily more risk averse for high values
of the transmission cost, and more risk-taking for low values
of the transmission cost. Indeed, this phenomenon is similar
to the Braess-like paradoxes observed in both the engineering
and applied game theory literature [30]-[32], and hints at an
important design criterion for next generation wireless random
access protocols: Always maintain some level of randomness
to better tame selfishness in mobile users for higher target data
rates.

D. Future Research Directions

Before concluding this section, we mention briefly some
future research directions of interest within this Bayesian
random access game formulation. One issue of interest is
to reveal more comprehensive learning dynamics in more
general channel settings. Even though the same principles
and techniques can be applied, the system behavior observed
for imperfect collision channels does not necessarily extend
to other channel models in a straightforward manner. For
example, the uniqueness of a Nash equilibrium does not
always imply that users can learn to play it. When the collision
channel is noise-free, the equilibrium is unique [16] but
unstable. Similarly, when the number of users increases, the
set of Nash equilibria becomes more complicated to analyze.
For arbitrary numbers of users, determining stable equilibria,
and identifying initial conditions leading to such equilibria
with required performance criteria are other future research
problems of interest. Solving these problems could lead to
designs for efficient random access control mechanisms, andto
reverse/forward engineering [4], [5] of existing ones to enforce
desirable system performance.

VII. C ONCLUSION

In this paper, we have focused on layer 2 contention
resolution strategies for wireless networks with multipacket
reception. The multipacket reception capability is an important

feature of our model to capture probabilistic receptions in
wireless multiple access systems. We have obtained necessary
and sufficient conditions for a Nash equilibrium strategy
profile. To demonstrate tangible applications, these equilibrium
conditions have been solved for specific channel models to
derive contention resolution strategies and to analyze the
resulting network performance. Various engineering insights
such as designing utility functions to maximize communica-
tion rates and to achieve service differentiation have been
illustrated based on the derived equilibrium strategies. We
have also studied the asymptotic collective equilibrium be-
havior, and established a Poisson-Bernoulli approximation for
the total number of packet arrivals from an infinite selfish
user population. Finally, we have examined the contention
resolution problem with imperfect information, derived the
form of equilibrium strategies, established their existence and
uniqueness, and analyzed a strategy update mechanism based
on best-response dynamics converging to an equilibrium.
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APPENDIX A
PROOF OFTHEOREM 1

We will first obtain an explicit representation for expected
user utilities. LetΓi

(

R,p−i

)

be the probability that a packet
transmission from useri becomes successful given the channel

reception matrixR and other users’ transmission probabilities
p−i. Γi

(

R,p−i

)

can be written asΓi

(

R,p−i

)

=
∑N

n=1

∑

In⊆I:
i∈In,|In|=n

γn
∏

j∈In−{i} pj
∏

j∈I−In
(1− pj).

Then, the expected utility that useri receives
when the random access game is played
according to p is equal to Ui

(

pi,p−i

)

=
pi
(

(ui,S − ui,F ) Γi

(

R,p−i

)

− (ui,W − ui,F )
)

+ ui,W .
Now, suppose thatp⋆ is a Nash equilibrium. Firstly,p⋆i must
be βi if Γi

(

R,p−i

)

>
ui,W−ui,F

ui,S−ui,F
since Ui

(

pi,p
⋆
−i

)

is a
linear function ofpi whenp⋆

−i is fixed. Secondly,p⋆i must be
αi if Γi

(

R,p−i

)

<
ui,W−ui,F

ui,S−ui,F
. Finally, p⋆i can be set to any

value in [αi, βi] if Γi

(

R,p−i

)

=
ui,W−ui,F

ui,S−ui,F
. This completes

the proof for theonly if part of the theorem. The sufficiency
of the above equilibrium conditions also follows from similar
arguments.

APPENDIX B
PROOF OFTHEOREM 2

Let I−{i,j} = I − {i, j} and p−{i,j} = (pk)k∈I−{i,j}
.

Further, letΓi

(

R,p−i

)

be defined as in the proof of Theorem
1. We can expandΓi

(

R,p−i

)

as a function ofpj as

Γi

(

R,p−i

)

= Γi

(

R, pj ,p−{i,j}

)

= pj

N−2
∑

n=0

∑

In⊆I−{i,j} :

|In|=n

γn+2

∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk)

+ (1− pj)

N−2
∑

n=0

∑

In⊆I−{i,j} :

|In|=n

γn+1

∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk) .

The last equation implies the relationΓi

(

R, pi,p−{i,j}

)

=

Γj

(

R,p−j

)

. We also have
∂Γi(R,p−i)

∂pj
< 0, i.e., see (4).

Thus,Γi

(

R, pj ,p−{i,j}

)

is strictly decreasing inpj for any
given fixedp−{i,j}. Let p⋆ be a Nash equilibrium such that
there existp⋆i andp⋆j in (α, β) andp⋆i 6= p⋆j . By Theorem 1,

this can happen only ifΓi

(

R, pj,p
⋆
−{i,j}

)

crosses c
1+c

at two
points p⋆j and p⋆i ; but this contradicts the strictly decreasing

nature ofΓi

(

R, pj ,p
⋆
−{i,j}

)

as a function ofpj . Equation 1
follows after some simplifications.

APPENDIX C
PROOF OFTHEOREM 3

We will first obtain an important lemma showing that the
existence of a Nash equilibrium with an infinite population of
users having positive transmission probabilities necessitates a
kind of homogeneity in this population.

Lemma 1:Let ξi = ci
1+ci

and ξ = infi≥1 ξi. If p⋆
N exists

for all N large enough, thenlimi→∞ ξi = ξ ∈ (0, 1).
Proof: Let ξ(N) = min1≤i≤N ξi. By using Theorem

1 (see also our discussion in Section IV for collision chan-
nels), we can write the equilibrium transmission probabilities
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∂Γi

(

R,p−i

)

∂pj
= −

N−2
∑

n=0

∑

In⊆I−{i,j} :

|In|=n

(γn+1 − γn+2)
∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk) < 0. (4)

{

p⋆i,N
}

i∈I
as

p⋆i,N = 1− ξ−1
i





N
∏

j=1

ξj





1
N−1

for all i ∈ I. Hence, existence ofp⋆
N requires ξ(N) ≥

(

∏N
i=1 ξi

)
1

N−1

. Otherwise, there exists at least one user with
an infeasible probability assignment. We first show thatξ is
a limit point of {ξi}i≥1. If not, for all ǫ > 0, there exists
a sufficiently largeM such thatξi ≥ ξ + ǫ for all i ≥ M .

This implies
(

∏N
i=1 ξi

)
1

N−1

≥
(

∏M
i=1 ξi

)
1

N−1

(ξ + ǫ)
N−M
N−1 .

Thus,
(

∏N
i=1 ξi

)
1

N−1

becomes larger thanξ+ ǫ
2 , and therefore

larger thanξ(N), for all sufficiently largeN , which contradicts
the existence ofp⋆

N . A similar contradiction also shows that
ξ ∈ (0, 1).

Similarly, we can show thatξ is the only limit point of
{ξi}i≥1. Otherwise, letζ be another limit point for{ξi}i≥1,
andg(N) be the function showing the number ofξi’s belong-
ing to (ζ − ǫ, ζ + ǫ) for 1 ≤ i ≤ N , and someǫ > 0 small
enough satisfyingζ − 2ǫ > ξ + ǫ. Sinceζ is a limit point for
{ξi}i≥1, g(N) grows to infinity. Observe thatξ(N) ∈ [ξ, ξ+ǫ)
for all sufficiently largeN . Then,
(

N
∏

i=1

ξi

)

1
N−1

≥ ξ(N)
N−g(N)

N−1 (ξ(N) + ǫ)
g(N)
N−1

= ξ(N) · ξ(N)
1

N−1

(

1 +
ǫ

ξ(N)

)

g(N)
N−1

.

It is enough to show thatξ(N)
1

N−1 = 1 − O
(

1
N

)

and
(

1 + ǫ
ξ(N)

)

g(N)
N−1

= 1+O
(

g(N)
N

)

to complete the proof. Since
the proofs are similar, we will focus only on the proof for the

relation
(

1 + ǫ
ξ(N)

)

g(N)
N−1

= 1 + O
(

g(N)
N

)

. To this end, the
following chain of equalities and inequalities can be obtained
by using the Taylor series expansion for the logarithm and the
fact thatg(N) ≤ N − 1 for all sufficiently largeN :
∣

∣

∣

∣

∣

∣

1−

(

1 +
ǫ

ξ(N)

)

g(N)
N−1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1− exp

(

g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

))∣

∣

∣

∣

=
g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

)

·

∣

∣

∣

∣

1 +
1

2!

g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

)

+
1

3!

(

g(N)

N − 1

)2

log

(

1 +
ǫ

ξ(N)

)2

+ · · ·

∣

∣

∣

∣

∣

≤
g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

)

·

∣

∣

∣

∣

1 +
g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

)

+
1

2!

(

g(N)

N − 1

)2

log

(

1 +
ǫ

ξ(N)

)2

+ · · ·

∣

∣

∣

∣

∣

≤
g(N)

N − 1
log

(

1 +
ǫ

ξ(N)

)

exp

(

log

(

1 +
ǫ

ξ(N)

))

≤
g(N)

N − 1

(

1 +
ǫ

ξ

)

log

(

1 +
ǫ

ξ

)

.

This implies that
(

N
∏

i=1

ξi

)

1
N−1

≥ ξ(N)

(

1 +O

(

g(N)

N

)

−O

(

1

N

)

−O

(

g(N)

N2

))

> ξ(N)

for all sufficiently largeN , which is another contradiction.
Hence,ξ is the only limit point of{ξi}i≥1, which concludes
the proof of the lemma.

We will now prove the if direction. Suppose
limN→∞

∑N
i=1 p

⋆
i,N = m ∈ (0,∞) exists. Let FN be

the distribution of YN . Then, by the Markov inequality,

Pr {YN > M} ≤
E[(YN−E[YN ])2]
(M−E[YN ])2 = O

(

1
M2

)

. Thus,
{FN}N≥2 is a tight sequence of distributions. By using
this tightness result, we will now show thatFN converges,
in variational distance, to a probability distributionF . Let
p⋆i,∞ = limN→∞ p⋆i,N , which can be shown to exist by using
the above lemma. Then, we also havelimi→∞ p⋆i,∞ = 0.
Thus, for any givenǫ > 0, we can chooseK large enough
so that maxi≥K p⋆i,∞ ≤ ǫ

2m . Let λN =
∑N

i=K p⋆i,N and
λ = limN→∞ λN . Then, by using metric properties of total
variation distance and Le Cam’s inequality, we can bound

dTV

(

YN ,Po (λ) +

K−1
∑

i=1

Bern
(

p⋆i,∞
)

)

as lim supN→∞ dTV

(

YN ,Po (λ) +
∑K−1

i=1 Bern
(

p⋆i,∞
)

)

≤

2λmaxi≥K p⋆i,∞ ≤ ǫ. This implies that{FN}N≥2 is a Cauchy
sequence with respect to the metricdTV , and therefore, by
using the tightness result above, a limiting probability distri-
butionF to whichFN converges exists. This also establishes
the Poisson-Bernoulli approximation in Theorem 3.

Now, we prove theonly if part. In fact, this will be a general
result for any sequence of triangular arrays of Bernoulli
random variables. Suppose nowYN converges in distribution
to a real valuedY . LetmN = E [YN ] andXi,N = Yi,N−pi,N ,
whereYi,N is the Bernoulli random variable with meanpi,N .
First, assumelim supN→∞ mN = ∞. By using Hölder’s in-
equality, it can be shown that there exists aδ1 > 0, which is the
same for allpi,N , such that we haveE

[

e−tXi,N
]

≤ 1+ t2pi,N
for all t ∈ (0, δ1). By using this result and Markov’s inequality,
we can further show thatPr

{

YN ≤ mN

2

}

≤ e−
t
4

∑
N
i=1 pi,N
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for all t ∈ (0, δ1). Since lim supN→∞ mN = ∞, we can
find a subsequence{mNk

}∞k=1 such thatmNk
≥ k. Then,

Pr
{

YNk
≤

mNk

2

}

≤ e
−tk
4 . By the Borel-Cantelli lemma,

this implies YNk
diverges to∞ almost surely, which is a

contradiction. Thus, we must havelim supN→∞ mN < ∞.
This implies uniform integrability ofYN . Since the conver-
gence in distribution of uniformly integrable random vari-
ables also implies the convergence in mean [26], we have
limN→∞ E [YN ] = E [Y ] < ∞.

APPENDIX D
PROOF OFTHEOREM 4

Assumes⋆ is a Nash equilibrium. It is easy to see that
Γ̃i

(

R, s⋆−i

)

is the conditional success probability of useri

given that it transmits and others choose their contention
resolution strategies according tos⋆−i. Then, by fixings⋆−i

and varyingsi, the expected utility of useri can be written as

U
(

si, s
⋆
−i

)

=

∫ ∞

0

si(ci)
(

Γ̃i

(

R, s⋆−i

)

− ci

(

1− Γ̃i

(

R, s⋆−i

)

))

dFi (ci) ,

which is maximized whensi (ci) = βi1{ci<τ⋆
i }

+pi1{ci=τ⋆
i }

+

αi1{ci>τ⋆
i }

almost surely. Similarly, if, for alli ∈ I, s⋆i is in

the form s⋆i (ci) = βi1{ci<τ⋆
i }

+ pi1{ci=τ⋆
i }

+ αi1{ci>τ⋆
i }

,
expected utilities of all users are maximized, and therefore s⋆

is a Nash equilibrium.
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