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Abstract— A new technique based on first passage processes
is presented as a means for calculating the detection time of an
event by wireless mobile sensors located in Rd, d = 1, 2 and 3.
Our proposed method is valid for any type of mobility model, and
is amenable to a variety of extensions. We consider heterogenous
networks in which sensor platforms have different mobility
patterns. The second extension considers unreliable sensors with
randomly distributed operational lifetimes. The second general-
ization is of paramount importance if the network is deployed
in a hostile environment. Our main results are illustrated for
random linear motion and Brownian motion. An approach for
applying our theorems when sensors move according to a time-
homogenous Markov process is also considered.

I. INTRODUCTION

In many applications, the length of time that passes until an
event is detected is of critical importance. In static networks,
if the amount of area covered by each sensor is equal to A and
the sensor locations are Poisson distributed with intensity λ >
0, then the fraction of area covered is equal to 1−exp(−λ·A).
This is also the probability that a point target is detected by
one of the sensors. In a static network, this probability remains
the same over time.

In this paper, we determine event detection time probability
for wireless mobile sensor networks located in Rd, d = 1, 2 or
3. A new approach based on first passage processes is proposed
to determine the time required to detect an event. This tech-
nique reduces event detection time probability calculations to
that of finding the first instance in which a randomly initiated
trajectory for sensor platform crosses an event boundary. Our
method is valid for any kind of mobility model. We make
no assumptions with regard to the type of network boundary.
Our network may have no rigid, well-defined boundaries, or it
may have a reflecting or an absorbing boundary. Furthermore,
this method admits very natural extensions to heterogenous
networks where different sensors may have different mobility
patterns (e.g., linear motion and Brownian motion), and to
networks with unreliable sensors having limited lifetimes.
Specifically, if the network is deployed in a hostile environ-
ment such as a battlefield or the inside of a burning building, it
is expected to observe unforeseen sensor failures. We illustrate
the applications of our main theorems to linear motion and
Brownian motion. We also outline how one can calculate

event detection time probability for time-homogenous Markov
processes.

A. Related Work

Coverage of wireless sensor networks and the detection of
an event or an intruder are among the fundamental problems
considered in the domain of wireless sensors, and have at-
tracted considerable amount of research interest. Some of these
work (e.g., [1] and [2]) deal with immobile networks, while
the other (e.g., [3], [4], [5], [6] and [7]) study the coverage of
mobile sensor networks.

In [1], the authors analyze the coverage of networks with
immobile nodes by combining Voronoi diagrams and graph
theoretical techniques. In [2], connectivity and coverage prop-
erties of an unreliable sensor grid are analyzed. Papers [3]
and [4] focus on algorithmic aspects. They propose network
deployment protocols to enhance the coverage of wireless
mobile sensor networks after the initial placement of the
sensors. Authors of [5] and [6] studied the coverage of sensor
networks under random mobility patterns, which is also what
we examine in this work. However, they limit themselves to
very specific mobility models such as random linear mobility
[5] or Brownian motion [6]. The analysis presented in these
papers is based on the theory of coverage processes and
only valid for infinite size networks. In contrast to them, we
do not assume any specific mobility pattern (see Theorem
1). Our analysis is based on the theory of first passage
processes and is valid for all finite size networks. We also
show validity for infinite networks by taking the limit as
the network size increases without bound. We also analyze
heterogenous networks in which different sensors may have
different mobility patterns (see Theorem 3), and the networks
with unreliable sensors having random lifetimes (see Theorem
4). In [7], the intrusion detection problem was considered.
Sensor nodes are static but a malicious agent linearly moves
inside the network. They determine the first time this agent
detected by the largest connected component so that message
can be communicated to a sink in a multihop fashion. In this
work, we do not take into account the connectivity of the
network because we are looking at mobile sensor networks
where each node gets connected for periods of time due to
node mobility, usually within a small delay in dense networks



(see [7]). We assume whenever any one of the sensors detects
the event, it can report it to a fusion center or a sink within a
bounded delay because of mobility.

II. NETWORK MODEL

We consider a network of mobile sensors in Rd, d = 1, 2
and 3. Mobile sensors are initially Poisson distributed over
the network domain, which is a subset of Rd, such that sensor
locations {Xi}i≥1 are independent. Therefore, for any Borel
subset A of the network domain, the number of sensors in A
obeys to a Poisson random variable with mean λ|A|, where λ
is the node density, and | · | denotes the Lebesgue measure. If
we let S(A) to be the number of sensors in A, then

P{S(A) = n} =
(λ|A|)ne−λ|A|

n!
.

Let BR represent our network domain. We consider ball
shaped networks in Rd, i.e., BR = {x ∈ Rd : ||x|| ≤ R}.
Hence, it will be a line, disc and sphere in R1, R2 and R3,
respectively. Let ∂BR be the boundary of the network domain.
For the general calculations, we have no assumption on the
nature of the network boundary. It can be one of the following
three types: (i) Hard network boundary where sensors return
to the interior of the network in a manner reminiscent of that
of a light wave reflecting off a mirror whenever they reach
to ∂BR; (ii) Soft network boundary where sensors are stopped
whenever they reach to ∂BR; (iii) No network boundary where
sensors are allowed to go in and out of BR.

Each sensor is equipped with sensing capability of range r.
Thus, a ball B(X, r) of radius r and centered at X is placed
at each sensor position. Intersection of the union of such balls⋃

i B(Xi, r) with BR represents the covered region of BR.
After the initial deployment, we assume that all sensors move
according to some stochastic process {Mt}t>0, and that the
motion of each sensor is independent. Consequently, the area
covered by the sensors changes over time.

Under this setting, we are interested in figuring out how
long it takes to detect the occurrence of an event for a given
mobility model. An ”event” can be a point target, an explosion,
a fire or the existence of toxic chemicals and bio-hazards. For
the ease of mathematical exposition, we will assume that this
event affects a ball shaped region centered at the origin with
radius l. This region will be represented by Bl. We say that
an event is detected once the (mobile) region, B(Xi +Mt, r),
sensed by any one of the sensors intersects with the ball Bl

(see Figure 1).

III. DETECTION TIME CALCULATIONS UNDER THE
GENERAL MOBILITY MODEL

In this section, we will present the calculations for finding
the detection time probability of an event under the general
mobility model. Let TR be the detection time of an event
by the sensors located in BR. We first study the probability
P{TR > t} for t ≥ 0. We then look at the limiting case where
our network domain becomes Rd. The upcoming analysis
below is valid for any type of sensor mobility and previously

Fig. 1. A realization of the trajectory of an event detecting sensor started at
x ∈ BR.

mentioned network boundary. Our analysis reveals that to
determine P{TR > t}, it is enough to find the first contact
time of the region sensed by a sensor node, which begins at a
random position uniformly distributed over BR−Br+l, to the
ball Bl.

Theorem 1: Let ρ = r + l and pR,ρ(t) be the probability
that the sensed region of a sensor node started uniformly over
the disc D(R, ρ) = BR − Bρ has intersected with the ball Bl

by time t. Then,
i-) If d = 1,

P{TR > t} = exp(−2λρ) · exp
(− 2λ(R− ρ)pR,ρ(t)

)
.

ii-) If d = 2,

P{TR > t} = exp(−λπρ2) · exp
(− λπ(R2 − ρ2)pR,ρ(t)

)
.

iii-) If d = 3,

P{TR > t} = exp(−4
3
λπρ3) · exp

(− 4
3
λπ(R3 − ρ3)pR,ρ(t)

)
.

Proof: We only give the proof for R2. Proofs for the other
cases (d = 1 and d = 3) are similar. Let ρ = r + l. Consider
Figure 1.

If there is a sensor inside Bρ, then TR = 0. Thus,

P{TR > t} = P{S(Bρ) = 0}P{TR > t|S(Bρ) = 0}
= exp(−λπρ2)P{TR > t|S(Bρ) = 0}, (1)

for any t ≥ 0. Then,

P{TR>t}=exp(−λπr2)
P∞

n=0

(
P{S(D(R,ρ))=n|S(Bρ)=0}·

P{TR>t|S(Bρ)=0,S(D(R,ρ))=n}
)

(a)
=exp(−λπr2)

P∞
n=0

(
λπ(R2−ρ2)

)n
e−λπ(R2−ρ2)

n!

(
1−pR,ρ(t)

)n
, (2)



where (a) follows from the spatial independence properties
of the Poisson process By considering the distribution of the
Poisson random variable with mean λπ(R2−ρ2)(1−pR,ρ(t)),
one can simplify the summation in Equation 2 to the formula
given for d = 2.

This theorem reduces the event detection time probability
calculations to finding the first hitting time of a sensor to the
ball Bρ. Note that we have made no assumptions about sensor
mobility and the boundary behavior of the network. As long
as the sensors move independently, Theorem 1 holds.

Another important quantity of interest is the detection time
T of an event for infinite size networks. Intuitively, as R
grows to infinity, it is expected to have P{TR > t} converges
to P{T > t}. That is, detection probability of an event
is continuous at infinity. The following theorem proves this
phenomenon formally.

Theorem 2: limR→∞ P{TR > t} = P{T > t} for any t ≥
0.

Proof: We will use a coupling argument. Let Pλ,R be the
Poisson process with intensity λ on BR. Similarly, let Pλ be
the Poisson process with intensity λ on Rd. We generate Pλ,R

and Pλ depending on each other, i.e., they are coupled to each
other. To this end, let Pλ,R ≡ Pλ ∩ BR for any R > 0.

Then, first observe that the event {TR2 > t} is contained
in the event {TR1 > t} whenever R2 ≥ R1. In other words,
if the detection by any one of the sensors initially located in
BR2 does not occur by time t, this automatically implies that
the detection does not occur by the sensors initially located
in BR1 . Thus, by continuity of the probability measure from
above, limR→∞ P{TR > t} = P

(⋂
R>0{TR > t}).

Let E =
⋂

R>0{TR > t}. It is enough to show that E =
{T > t}. Take any ω ∈ {T > t}. Then, for any R > 0,
TR(ω) > t. Thus, ω ∈ E, which implies {T > t} ⊆ E. Take
now any ω ∈ E. Assume ω does not belong to {T > t}. Then,
there exists a sensor starting at some point x ∈ Rd such that
it detects the event before time t. For R ≥ |x|, this sensor
lies in BR. This implies ω /∈ {TR > t} for R ≥ |x|. Thus,
ω /∈ E, which is a contradiction. Therefore, ω ∈ {T > t} and
E = {T > t}.

One advantage of the above formalization of the event
detection time problem is that Theorem 1 admits some natural
and practical generalizations. We discuss two of them. In the
first case, we consider the heterogenous networks in which
we allow different nodes to have different mobility patterns.
Formally, finite dimensional distributions of the stochastic
processes M

(i)
t and M

(j)
t characterizing the trajectories of the

mobile sensors i and j can differ from each other for different
i and j. For example, one of them can be Brownian motion,
while the other being the simple linear mobility model. The
second generalization will be to consider unreliable mobile
sensors where they can die or get killed unexpectedly. In this
case, we will analyze the effect of the randomness in the
operational lifetime of the sensors on the event detection time
probability.

A. Heterogenous Networks

To start with, let’s consider the mobile sensor network in R2

containing two types of nodes, type 1 and type 2. Type i, i =
1, 2, sensors are distributed over the network domain according
to the Poisson process PR,λi at t = 0, and their trajectories
obey the stochastic process M

(i)
t in R2 for t > 0. Let λ =

λ1 + λ2. Let T
(i)
R be the detection time of the event by type i

sensors. Similarly, we define p
(i)
R,ρ(t) as in Theorem 1 for type i

sensors. Since sensors move independently inside the network
domain, we have P{TR > t} = P{T (1)

R > t} · P{T (2)
R > t}.

With the notations introduced in Theorem 1, one can write
P{T (i)

R > t} = exp(−λiπρ2) exp(−λiπ(R2 − ρ2)p(i)
R,ρ(t)).

As a results, P{TR > t} becomes equal to:

P{TR > t} =

exp(−λπρ2) · exp
(
− π(R2 − ρ2)

2∑

i=1

λi · p(i)
R,ρ(t)

)
. (3)

Through similar calculations, one can extend the Equation
3 to the networks in Rd, d = 1, 2, 3, with arbitrary number of
sensor types as follows.

Theorem 3: Consider a mobile sensor network in Rd, d =
1, 2, 3, with sensor types i = 1, 2, . . . , n. Each sensor type is
distributed over the network domain according to a Poisson
process with intensity λi. Let λ =

∑n
i=1 λi. Then, it is enough

to replace the first hitting time probability pR,ρ(t) in Theorem
1 with 1

λ

∑n
i=1 λip

(i)
R,ρ in order to determine P{TR > t}.

B. Sensors with Limited Lifetime

There are several practical reasons to study the event
detection times for networks having sensors with limited (ran-
dom) lifetime. Sensor nodes, especially the mobile ones, have
limited operational battery lifetimes. The process of sensing,
transmitting and receiving packets as well as moving inside
the network domain drain sensors’ battery energy. The second
reason is the consideration of harsh environment factors.
Sensor networks may be deployed in very hostile environments
such as in battlefields, or inside a building in case of a fire
Under these conditions, unexpected sensor failures may occur.
The third reason is the possibility of the existence of agents or
enemies trying to jam the sensing capability of our network.
A sensor that is successfully jammed by an enemy can be
disabled.

These reasons motivate us to consider networks with sensors
having limited lifetime. To this end, let ζ be the random
variable representing the sensor lifetime. Mobile sensors are
initially distributed over the network domain according to
PR,λ, and then move according to {Mt}t>0 until ζ. Stochastic
process M̃t characterizing the sensor mobility is equal to Mt

if t < ζ, and to ∂ if t ≥ ζ for some ∂ /∈ Rd ”coffin”
state. Let τ̃ and τ be the random variables representing the
first time a sensor with sensing range r detects the event Bl

when it moves according to M̃t and Mt respectively, and its
initial position is chosen randomly uniformly over the disc



DR,ρ = BR − Bρ, where ρ = r + l. Let p̃R,ρ(t) = P{τ̃ ≤ t}
and pR,ρ(t) = P{τ ≤ t}. Then, we have:

p̃R,ρ(t) = P{τ̃ ≤ t, ζ > t}+ P{τ̃ ≤ t, ζ ≤ t}
= P{ζ > t}P{τ̃ ≤ t|ζ > t}+ P{τ̃ ≤ t, ζ ≤ t}
(a)
= P{ζ > t}pR,ρ(t) + P{τ̃ ≤ t, ζ ≤ t} (4)

where (a) follows from the fact that the trajectory of a sensor
is equal to Mt in distribution given that it has not died yet.
Let fζ(t) be the probability density function of ζ.1 Then, we
can compute the second probability as follows:

P{τ̃ ≤ t, ζ ≤ t} =
∫ t

0

fζ(s)P{τ̃ ≤ t|ζ = s}ds

=
∫ t

0

fζ(s)P{τ̃ ≤ s|ζ = s}ds

=
∫ t

0

fζ(s)pR,ρ(s)ds

= E[pR,ρ(ζ) · 11{ζ≤t}]. (5)

If we combine Equations 4 and 5, we obtain p̃R,ρ(t) =
E[pR,ρ(t∧ζ)], where t∧ζ represents the minimum of t and ζ.
If we replace pR,ρ(t) with p̃R,ρ(t) in Theorem 1, we obtain the
event detection time probability for the mobile sensor networks
with unreliable sensors having limited lifetimes as stated in the
following theorem.

Theorem 4: Consider a mobile sensor network in Rd, d =
1, 2, 3, with unreliable sensor nodes having limited lifetimes.
Let sensor lifetimes be distributed according to the random
variable ζ. Sensors are initially Poisson distributed over the
network domain with intensity λ, and then move according to
{Mt}0≤t≤ζ until ζ. For such networks, it is enough to replace
pR,ρ(t) with E[pR,ρ(t∧ζ)] in Theorem 1 to determine P{TR >
t}.

Several other extensions of Theorem 1 combining heteroge-
nous networks with unreliable mobile sensor nodes are also
possible. They are left to the reader due to space limitations.

IV. ONE DIMENSIONAL NETWORKS

For the rest of the paper, we illustrate the applications of
the main theorems obtained in section III on more concrete
mobility models such as random linear mobility model and
Brownian motion. We start our analysis with 1-D sensor net-
works containing sensors which move according to Brownian
motion. The main steps of the analysis for this case can be
extended to any Markov process on the line. We will also
briefly mention this extension.

A. Brownian Motion on the Line

Consider a 1-D mobile sensor network in which sensors
move independently according to a Brownian motion {Bt}t≥0

with zero drift and variance parameter σ2 > 0. An event occurs
at the origin and affects the area (−l, l). Sensing range of
sensors is r. If a sensor is located at x, it senses the region

1If ζ does not have a density, then one can use its distribution function in
rest of the analysis. The same result continues to hold.

Fig. 2. Detection of the event for 1-dim networks.

(x− r, x+ r) (See Figure 2). Therefore, whenever any one of
the sensors becomes closer than ρ = l + r to the origin, the
event is detected. We will now briefly present the calculations
based on the Laplace transform techniques for finding the first
detection time of the event by a sensor starting its motion at
x ≥ ρ at time 0. The main steps of this analysis will also
be valid for any continuous Markov process on the line. Our
calculations will be based on the analysis given in [8].

Let q(x, s; y, t) be the transition probability density function
(TPDF) of Bt, where t ≥ s ≥ 0. Intuitively, it is the
probability of Bt being in (y−dy, y +dy) given Bs = x, i.e.,
q(x, s; y, t) = P{Bt ∈ (y−dy, y +dy)|Bs = x}.2 For the rest
of the analysis, we will consider a sensor located at an arbitrary
position ||x|| ≥ ρ at time t = 0. Let τ be the first time it
reaches ρ, and fx

τ (t) be its probability density function (PDF).
Pick a point y ∈ (0, ρ). To reach y at time t, the sensor first
arrives ρ at time τ , and in the remaining time t−τ , it makes its
way to y. As a result, one can obtain by using strong Markov
property that q(x, 0; y, t) =

∫ t

0
fx

τ (s) ·q(ρ, 0; y, t−s)ds. When
viewed as a function of t, the integral is the convolution of
fx

τ (t) and q(ρ, 0; y, t). Hence, the Laplace transform f̃x
τ (w) of

fx
τ (t) is obtained as

f̃x
τ (w) =

q̃(x, 0; y, w)
q̃(ρ, 0; y, w)

, (6)

where q̃ is the Laplace transform of q. q(x, s; y, t) for Brown-
ian motion is equal to 1√

2πtσ2 exp
(
− |x−y|2

2|t−s|σ2

)
. After taking

the Laplace transform of q(x, 0; y, t) with respect to t, one
obtains

q̃(x, 0; y, w) =
1√

2σ2w
exp

(
−
√

2w|x− y|
σ

)
. (7)

By using Equations 6, 7 and the symmetry properties of the
Brownian motion, one obtains f̃x

τ (w) = exp
( −

√
2w|x−ρ|

σ

)
.

This is the characteristic function corresponding to the sta-
ble distribution with parameter 1

2 . After inversion, we have
fx

τ (t) = |x−ρ|√
2πt3σ2 · exp

( − |x−ρ|2
2σ2t

)
. Integrating this PDF, we

can obtain the detection probability for a sensor started at x.

Px{τ ≤ t} =
∫ t

0

fx
τ (s)ds = Erfc

( |x− ρ|√
2tσ2

)
. (8)

In order to calculate pR,ρ(t), one needs to replace x in the
above equation with a uniformly distributed random variable
X over (−R,−ρ) ∪ (R, ρ), and take one more expectation
over X .

pR,ρ(t) = E[PX{τ ≤ t}] =
1

R− ρ

∫ R

ρ

Erfc
(x− ρ√

2tσ

)
dx. (9)

2Formally, q(x, s; y, t) = d
dy
P{Bt ≤ y|Bs = x}.



Putting the expression of pR,ρ(t) into the formula given for
1-D networks in Theorem 1, we obtain

P{TR > t} = exp(−2λρ) exp
(
− 2λ

∫ R

ρ

Erfc
(x− ρ√

2tσ

))
dx.

By taking R to infinity and using Theorem 2, we also obtain
the detection time probability for infinite size networks:

P{T > t} = exp(−2λρ) exp
(
− 2λσ

√
2t√

π

)
. (10)

B. Large t Behavior of the Detection Probability

For other mobility models different than Brownian motion,
it may not be possible to obtain the inverse Laplace transform
for f̃x

τ (w). In these cases, one can invert it numerically to
obtain pR,ρ(t). However, if we are interested in the long time
behavior of the probability P{TR > t} as t → ∞, the more
eloquent way is to use Tauberian theorems to determine the
asymptotic behavior for P{TR > t}. Very briefly, Tauberian
theorems say that behavior of the Laplace transform near
the origin uniquely determines the behavior of the function
at infinity. We will illustrate the application of Tauberian
theorems for the Brownian motion case. To this end, we have:

L
{

2λ(R− ρ)pR,ρ(t)
}

= 2λ(R− ρ)L
{
E

[ ∫ t

0

fX
τ (s)ds

]}

(a)
= 2λ(R− ρ)E

[
L

{ ∫ t

0

fX
τ (s)ds

}]

(b)
= 2λ(R− ρ)E

[ f̃X
τ (w)
w

]

=
2λ

w

∫ R

ρ

exp
(
−
√

2w(x− ρ)
σ

)
dx

=
2λσ√
2w

3
2
·
(
1− exp

(
−
√

2w(R− ρ)
σ

))
,

where (a) follows from Fubini’s theorem, and (b) is the integra-
tion formula for Laplace transform. Let’s consider infinite size
networks, and let pρ(t) = limR→∞ 2λ(R − ρ)pR,ρ(t). Note
that pρ(t) is not probability, and may be bigger than 1. Laplace

transform p̃ρ(w) of pρ(t) is equal to 2λσw−
3
2√

2
.3 Behavior of

p̃ρ(w) around zero determines the behavior of the detection
time probability at infinity. Since p̃ρ(w) is asymptotic to
2λσw−

3
2√

2
as w → 0, we have pρ(t) asymptotic to 2λσ

√
2t√

π
as

t → ∞ (See chapter 13 of [8], Theorem 4). This is exactly
the same exponent appearing in Equation 10.

C. Reflecting and Absorbing Network Boundaries

Following exactly the same analysis, one can obtain ex-
pressions of the detection time probability for networks with
different boundary behavior. For example, consider a 1-D
network with reflecting boundaries {−R, R}. Let’s consider
a sensor node initially located at x ∈ (ρ,R) and moving

3The change of limit and integration can be justified by using dominated
convergence theorem.

according to Bt. The first time it detects the event is equal
to the first time a Brownian motion particle reflected at R
becomes closer than ρ to the origin. TPDF for the Brownian
motion started at x ∈ (ρ,R) and reflected at R is equal
to q+(x, 0; y, t) = q(x, 0; y, t) + q(x, 0; 2R − y, t). As a
result, if the above analysis is repeated with q+(x, 0; y, t) in
stead of q(x, 0; y, t), we obtain the detection time probabil-
ity for networks with reflecting boundaries. If the boundary
{−R,R} is absorbing, then it is enough to use q−(x, 0; y, t) =
q(x, 0; y, t)−q(x, 0; 2R−y, t) for TPDF, and repeat the same
analysis given above.

D. Calculations for General Time-Homogenous Markov Pro-
cesses

We will now briefly present how one can proceed to calcu-
late the detection time probability for a network having sensors
moving according to a Markov process {Mt}t≥0. TPDF
q(x, s; y, t) of a Markov process satisfies the Kolmogorov’s
backward equation (KBE) ∂q

∂t = 1
2σ2(x) ∂2q

∂x2 + µ(x) ∂q
∂x with

appropriate boundary conditions (see [9]). σ2(x) and µ(x)
are called infinitesimal parameters of the process, and defined
as µ(x) = limh↓0 E

[
Mt+h − Mt|Mt = x

]
and σ2(x) =

limh↓0 E
[
(Mt+h − Mt)2|Mt = x

]
. They only depend on x

due to time-homogeneity. For example, σ2(x) = σ2 and µ = 0
for Brownian motion without drift. Solving KBE, we obtain
TPDF q(x, s; y, t) of the process, and then follow the same
steps as in Brownian motion case. Large time behavior of the
detection probability can also be obtained by using Tauberian
theorems.

V. LINEAR MOTION IN R2

We will illustrate another application of our main Theorem
1. Consider linearly moving sensors in R2. Under this mobility
model, a sensor chooses a random direction Θ ∈ [0, 2π] and
moves with a constant speed v in this direction. A sensor
senses the event whenever it becomes closer than ρ to the
origin. Let τ be the first time a sensor started randomly
uniformly over the disc DR,ρ = BR − Bρ senses the event.
Then, pR,ρ(t) = P{τ ≤ t} can be calculated by first
conditioning on the initial position M0 of the sensor, and then
taking one more expectation over all M0:

pR,ρ(t) = E[P{τ ≤ t|M0}]. (11)

Consider the Figure 3. If the sensor chooses the wrong
direction, i.e., Θ /∈ [−α(M0), α(M0)], then it cannot detect
the event. On the other hand, if it chooses the correct direction,
i.e., Θ ∈ [−α(M0), α(M0)], it will detect the event eventually
but it takes sometime to reach Bρ. Considering all the cases
and using f||M0||(x) = 2x

R2−ρ2 11{ρ≤x≤R} for the PDF of
||M0||, the expression for pR,ρ(t) can be obtained as in
Equation 12. We will not provide the details of the calculations
due to space limitations.

pR,ρ(t)= 1
π(R2−ρ2)

[
ρ
√

R2−ρ2+R2 arcsin
(

ρ
R

)
−πρ2

2

]

−
11
{tv≤

√
R2−ρ2}

π(R2−ρ2)

[
ρ
√

R2−ρ2+R2 arcsin
(

ρ
R

)
−2ρtv−πρ2

2

]
.(12)



Fig. 3. A sensor initially located at M0 and moving according to linear
motion.

Note that as t → ∞, pR,ρ(t) → P{τ < ∞} =
1
π

1
R2−ρ2

[
ρ
√

R2 − ρ2+R2 arcsin
(

ρ
R

)− πρ2

2

]
. Hence, a sensor

may never detect the event with some positive probability.
This further implies that for a finite size network, event
detection time can be infinite with positive probability for
linear mobility. This happens when all of the sensors choose
a wrong direction and miss the event. P{TR > t} for linearly
moving sensors can be obtained by plugging Equation 12
to the formula for 2-D networks in Theorem 1. In light of
Theorem 2, detection probability P{T > t} for infinite size
networks can be obtained by taking the limit P{TR > t} as
R goes to infinity.

P{T > t} = lim
R→∞

P{TR > t} = exp(−λπρ2) exp(−2λρtv).

Note that T is exponentially distributed on the event that
there is no sensor located in Bρ at time 0. A similar result
was also obtained in [5] by using coverage processes. Several
other extensions of this analysis to heterogenous networks
with sensors having different mobility models and sensors with
limited lifetimes are also possible by using Theorems 3 and
4.

VI. TIME-HOMOGENOUS MARKOV PROCESSES ON Rd

We will now briefly mention how one can proceed to
calculate the detection time probability for time-homogenous
Markov processes Mt = (M (1)

t , . . . , M
(d)
t ) on Rd. We will

construct Mt by taking independent copies of a 1-D time-
homogenous Markov process M

(i)
t and declaring it to be the

ith component of Mt. TPDF qi(xi, s; yi, t) of each component
of Mt can be obtained by solving KBE. TPDF of Mt is
then just the multiplication of individual qi’s: q(x, s;y, t) =∏d

i=1 qi(xi, s; yi, t). Now, consider a point y = (y1, . . . , yd)
with ||y|| < ρ. In order to reach a small ball B(y, ε) around

y, a sensor first needs to reach to the boundary ∂Bρ of the
ball Bρ at time τ , and then makes its way to B(y, ε) in the
remaining time t− τ . As a result, Laplace transform of fx

τ (t)
can be obtained through an analysis similar to the one given
in section IV. One exception is that the point Mt hits on the
surface of the sphere Bρ is random in this case. Therefore,
we need to appropriately scale the denominator of Equation
6 with the harmonic measure µ(θ) induced by Mτ on ∂Bρ.
Finally, the expression for f̃x

τ (w) can be given as:

f̃x
τ (w) =

p̃(x, 0;y, w)∫
∂Bρ

p̃(θ, 0;y, w)dµ(θ)
. (13)

After obtaining f̃x
τ (w), one can proceed as in Brownian motion

case to obtain pR,ρ(t) and P{TR > t}.

VII. CONCLUSION

In this paper, we studied the event detection probability for
wireless mobile sensor networks. In particular, we analyzed the
probability P{TR > t} of an event going undetected until time
t. We proposed a general method for calculating P{TR > t}
based on first passage processes. We showed that under any
mobility model, calculating P{TR > t} reduces to finding the
first time of a sensor hits to the region affected by the event
- Theorem 1. Our general method also admits some natural
extensions such as heterogenous networks in which different
sensors may have different mobility patterns and networks
having sensors with limited lifetimes - Theorems 3 and 4. We
then illustrated applications of our main theorems on concrete
mobility patterns such as Brownian motion and random linear
mobility. We also outlined how one can proceed to calculate
event detection time under more general mobility models such
as time-homogenous Markov processes on Rd, d = 1, 2, 3.
A variety of mobile sensor network scenarios, in addition
to the ones presented, may be analyzed using the tools and
techniques presented in this paper.
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